Direct Volume Rendering with Nonparametric Models of Uncertainty

We present a nonparametric statistical framework for the quantification, analysis, and propagation of data uncertainty in direct volume rendering (DVR). The state-of-the-art statistical DVR framework allows for preserving the transfer function (TF) of the ground truth function when visualizing uncertain data; however, the existing framework is restricted to parametric models of uncertainty. In this paper, we address the limitations of the existing DVR framework by extending the DVR framework for nonparametric distributions. We exploit the quantile interpolation technique to derive probability distributions representing uncertainty in viewing-ray sample intensities in closed form, which allows for accurate and efficient computation. We evaluate our proposed nonparametric statistical models through qualitative and quantitative comparisons with the mean-field and parametric statistical models, such as uniform and Gaussian, as well as Gaussian mixtures. In addition, we present an extension of the state-of-the-art rendering parametric framework to 2D TFs for improved DVR classifications. We show the applicability of our uncertainty quantification framework to ensemble, downsampled, and bivariate versions of scalar field datasets.

[1]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[2]  Timo Ropinski,et al.  Verifying Volume Rendering Using Discretization Error Analysis , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Valerio Pascucci,et al.  Analysis of large-scale scalar data using hixels , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[5]  Valerio Pascucci,et al.  Gaussian mixture model based volume visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[6]  D. V. Lindley,et al.  An Introduction to Probability Theory and Its Applications. Volume II , 1967, The Mathematical Gazette.

[7]  Kristin Potter,et al.  Surface boxplots. , 2014, Stat.

[8]  Paul Rosen,et al.  From Quantification to Visualization: A Taxonomy of Uncertainty Visualization Approaches , 2011, WoCoUQ.

[9]  L. Budin,et al.  Reconstruction of gradient in volume rendering , 2003, IEEE International Conference on Industrial Technology, 2003.

[10]  Alireza Entezari,et al.  A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[11]  Pak Chung Wong,et al.  Expanding the Frontiers of Visual Analytics and Visualization , 2012, Springer London.

[12]  Robert B. Ross,et al.  The Top 10 Challenges in Extreme-Scale Visual Analytics , 2012, IEEE Computer Graphics and Applications.

[13]  Alireza Entezari,et al.  Volumetric Feature-Based Classification and Visibility Analysis for Transfer Function Design , 2018, IEEE Transactions on Visualization and Computer Graphics.

[14]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[15]  Brian Summa,et al.  Persistence Atlas for Critical Point Variability in Ensembles , 2018, IEEE Transactions on Visualization and Computer Graphics.

[16]  A. M. Mathai Quadratic forms in random variables , 1992 .

[17]  Robert Michael Kirby,et al.  An Introduction to Verification of Visualization Techniques , 2015, An Introduction to Verification of Visualization Techniques.

[18]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Alireza Entezari,et al.  Visual Analysis of 3D Data by Isovalue Clustering , 2014, ISVC.

[20]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[21]  Christopher Nimsky,et al.  Automatic adjustment of bidimensional transfer functions for direct volume visualization of intracranial aneurysms , 2004, Medical Imaging: Image-Guided Procedures.

[22]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[23]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[24]  Aaron Knoll,et al.  Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data , 2015, Comput. Graph. Forum.

[25]  Chris R. Johnson,et al.  Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[26]  Brad E. Hollister,et al.  BIVARIATE QUANTILE INTERPOLATION FOR ENSEMBLE DERIVED PROBABILITY DENSITY ESTIMATES , 2015 .

[27]  Holger Theisel,et al.  Uncertain topology of 3D vector fields , 2011, 2011 IEEE Pacific Visualization Symposium.

[28]  Jinho Lee The Transfer Function BakeOff , 2001 .

[29]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[30]  M. Ament,et al.  Volume Rendering , 2015 .

[31]  Alireza Entezari,et al.  Uncertainty Quantification in Linear Interpolation for Isosurface Extraction , 2013, IEEE Transactions on Visualization and Computer Graphics.

[32]  A. Read Linear interpolation of histograms , 1999 .

[33]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[34]  Ibrahim Hoteit,et al.  Impact of Atmospheric and Model Physics Perturbations on a High‐Resolution Ensemble Data Assimilation System of the Red Sea , 2020, Journal of Geophysical Research: Oceans.

[35]  Kwan-Liu Ma,et al.  A framework for uncertainty-aware visual analytics , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[36]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[37]  Brad E. Hollister,et al.  Interpolation of Non-Gaussian Probability Distributions for Ensemble Visualization , 2013 .

[38]  Torsten Möller,et al.  Improving the Quality of Multi-resolution Volume Rendering , 2006, EuroVis.

[39]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[40]  Rüdiger Westermann,et al.  Visualizing the Variability of Gradients in Uncertain 2D Scalar Fields , 2013, IEEE Transactions on Visualization and Computer Graphics.

[41]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[42]  Hanqi Guo,et al.  eFESTA: Ensemble Feature Exploration with Surface Density Estimates , 2020, IEEE Transactions on Visualization and Computer Graphics.

[43]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[44]  Rüdiger Westermann,et al.  Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields , 2011, Comput. Graph. Forum.

[45]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[46]  Joseph Salmon,et al.  Mandatory Critical Points of 2D Uncertain Scalar Fields , 2014, Comput. Graph. Forum.

[47]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[48]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[49]  M. Sheelagh T. Carpendale,et al.  Theoretical analysis of uncertainty visualizations , 2006, Electronic Imaging.

[50]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[51]  Valerio Pascucci,et al.  Uncertainty Visualization of 2D Morse Complex Ensembles Using Statistical Summary Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[52]  K. Mueller,et al.  A comparison of normal estimation schemes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[53]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[54]  Anders Ynnerman,et al.  Estimation and Modeling of Actual Numerical Errors in Volume Rendering , 2010, Comput. Graph. Forum.

[55]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[56]  Hans Hagen,et al.  Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic , 2009, Comput. Graph. Forum.

[57]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[58]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[59]  Ibrahim Hoteit,et al.  Impact of Atmospheric and Model Physics Perturbations on a High‐Resolution Ensemble Data Assimilation System of the Red Sea , 2020 .

[60]  David S. Ebert,et al.  Illustration motifs for effective medical volume illustration , 2005, IEEE Computer Graphics and Applications.

[61]  Kwan-Liu Ma,et al.  Fuzzy Volume Rendering , 2012, IEEE Transactions on Visualization and Computer Graphics.

[62]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[63]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.