PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT

[1]  J. L. Rosa,et al.  TGF‐β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells , 2017, The FEBS journal.

[2]  D. Vertommen,et al.  Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes. , 2017, Cellular signalling.

[3]  Zhao-You Tang,et al.  Flot2 promotes tumor growth and metastasis through modulating cell cycle and inducing epithelial-mesenchymal transition of hepatocellular carcinoma. , 2017, American journal of cancer research.

[4]  Hui-min Li,et al.  Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma , 2017, Journal of experimental & clinical cancer research : CR.

[5]  H. Zhang,et al.  Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair and potentiate cisplatin efficacy in cancer cells , 2016, Oncotarget.

[6]  N. Hay,et al.  Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? , 2016, Nature Reviews Cancer.

[7]  R. Bartrons,et al.  Akt mediates TIGAR induction in HeLa cells following PFKFB3 inhibition , 2016, FEBS letters.

[8]  S. Chisholm,et al.  Survival of Prochlorococcus in extended darkness , 2016 .

[9]  M. Malumbres,et al.  AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest , 2015, Nature Cell Biology.

[10]  W. Yung,et al.  Role of AKT signaling in DNA repair and clinical response to cancer therapy. , 2014, Neuro-oncology.

[11]  A. Yalçin,et al.  6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27 , 2014, Cell Death and Disease.

[12]  Zhao-You Tang,et al.  MicroRNA-26a Inhibits Angiogenesis by Down-Regulating VEGFA through the PIK3C2α/Akt/HIF-1α Pathway in Hepatocellular Carcinoma , 2013, PloS one.

[13]  J. Trent,et al.  Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a Therapeutic Strategy against Cancer , 2013, Molecular Cancer Therapeutics.

[14]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[15]  Salvador Moncada,et al.  Fulfilling the metabolic requirements for cell proliferation. , 2012, The Biochemical journal.

[16]  L. Galluzzi,et al.  Molecular mechanisms of cisplatin resistance , 2012, Oncogene.

[17]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[18]  Xiaoling Li,et al.  Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C , 2010, Proceedings of the National Academy of Sciences.

[19]  Y. E. Chen,et al.  Involvement of Inducible 6-Phosphofructo-2-kinase in the Anti-diabetic Effect of Peroxisome Proliferator-activated Receptor γ Activation in Mice* , 2010, The Journal of Biological Chemistry.

[20]  J. Geddes,et al.  What is a randomised controlled trial? , 2009, Epidemiologia e Psichiatria Sociale.

[21]  A. Lane,et al.  Nuclear Targeting of 6-Phosphofructo-2-kinase (PFKFB3) Increases Proliferation via Cyclin-dependent Kinases* , 2009, The Journal of Biological Chemistry.

[22]  S. Paggi,et al.  Sorafenib in Advanced Hepatocellular Carcinoma , 2008 .

[23]  John O Trent,et al.  Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth , 2008, Molecular Cancer Therapeutics.

[24]  Q. Ye,et al.  Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. , 2007, Journal of hepatology.

[25]  Zhao-You Tang,et al.  P48 is a predictive marker for outcome of postoperative interferon‐α treatment in patients with hepatitis B virus infection‐related hepatocellular carcinoma , 2006, Cancer.

[26]  R. Bucala,et al.  Phosphorylation of the 6-Phosphofructo-2-Kinase/Fructose 2,6-Bisphosphatase/PFKFB3 Family of Glycolytic Regulators in Human Cancer , 2005, Clinical Cancer Research.

[27]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[28]  L. Leng,et al.  High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. , 2002, Cancer research.

[29]  Ramon Planas,et al.  Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial , 2002, The Lancet.

[30]  R. Bucala,et al.  An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Wood,et al.  Mechanism of open complex and dual incision formation by human nucleotide excision repair factors , 1997, The EMBO journal.

[32]  L. Gold,et al.  Endogenous mutagens and the causes of aging and cancer. , 1991, Mutation research.

[33]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[34]  G. Collins The next generation. , 2006, Scientific American.

[35]  J. J. Roberts,et al.  Drug resistance and DNA repair , 2004, Cancer and Metastasis Reviews.

[36]  A. Cuddihy,et al.  Cell-cycle responses to DNA damage in G2. , 2003, International review of cytology.

[37]  T. Lindahl,et al.  Repair of endogenous DNA damage. , 2000, Cold Spring Harbor symposia on quantitative biology.

[38]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.