Vibrationally resolved photoelectron angular distributions and branching ratios for the carbon dioxide molecule in the wavelength region 685–795 Å

Measurements of vibrational branching ratios and photoelectron angular distributions have been made in the regions of the Tanaka‐Ogawa, Lindholm, and Henning series for the CO2 molecule. The behavior of these parameters was found to be sensitive to which particular resonance is excited, with considerable intensity going into vibrational modes other than the symmetric stretch. An initial analysis of some of the data taken is presented.

[1]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[2]  P. Rosmus,et al.  Ro-vibronic states in the electronic ground state of carbon dioxide(1+) (X2.PI.g) , 1992 .

[3]  C. Ng Vacuum ultraviolet photoionization and photodissociation of molecules and clusters , 1991 .

[4]  M. Hayes,et al.  The effect of autoionization on the CO2+ X 2Πg vibrational branching ratios in the wavelength range 680–790 Å , 1990 .

[5]  A. MacDowell,et al.  The performance of a 5 metre normal incidence monochromator at the Daresbury Laboratory Synchrotron Radiation Source , 1989 .

[6]  D. Holland,et al.  High resolution angle-resolved photoelectron spectrometer system , 1984 .

[7]  D. Dill,et al.  Valence-shell photoabsorption by CO2 and its connections with electron-CO2 scattering , 1983 .

[8]  L. Cederbaum The multistate vibronic coupling problem , 1983 .

[9]  D. Holland,et al.  Characterization of some autoionization resonances in CO2 using triply differential photoelectron spectroscopy , 1982 .

[10]  D. Holland,et al.  The angular distribution parameters of argon, krypton and xenon for use in calibration of electron spectometers , 1982 .

[11]  D. Gauyacq,et al.  The emission spectrum of the CO2+ ion: rovibronic analysis of the band system , 1979 .

[12]  S. Manson,et al.  Photoabsorption, Photoionization, and Photoelectron Spectroscopy , 1979 .

[13]  J. West,et al.  Effects of shape resonances on vibrational intensity distributions in molecular photoionization , 1979 .

[14]  L. Åsbrink,et al.  Valence excitation of linear molecules. II. Excitation and UV spectra of C2N2, CO2 and N2O , 1978 .

[15]  J. West,et al.  Absolute photoionization cross-section tables for helium, neon, argon, and krypton in the VUV spectral regions , 1976 .

[16]  M. Horani,et al.  The Emission Spectrum of the CO2+ Ion: Band System , 1975 .

[17]  J. Gardner,et al.  Resonances in the angular distribution of xenon photoelectrons , 1973 .

[18]  K. McCulloh Photoionization of carbon dioxide , 1973 .

[19]  D. Dill Resonances in Photoelectron Angular Distributions , 1973 .

[20]  A. L. Smith,et al.  Effect of autoionization on the production rates of vibrationally excited O2+ by solar photoionization☆ , 1970 .

[21]  F. LeBlanc,et al.  Higher Ionization Potentials of Linear Triatomic Molecules. I. CO2 , 1960 .

[22]  K. Ueda,et al.  Selective population of spin–orbit levels in the autoionization of a polyatomic molecule: Branching ratios and asymmetry parameters for the Tanaka–Ogawa Rydberg series in CO2 , 1994 .

[23]  D. A. Shirley,et al.  High resolution UV photoelectron spectroscopy of CO+2, COS+ and CS+2 using supersonic molecular beams , 1988 .

[24]  K. Siegbahn,et al.  High resolution angle-resolved photoelectron spectrum of CO2, excited with polarized resonance radiation , 1986 .

[25]  P. W. Langhoff,et al.  Photoexcitation and ionization in carbon dioxide: Theoretical studies in the separated-channel static-exchange approximation , 1981 .

[26]  H. Henning Die Absorptionsspektren von Kohlendioxyd, Kohlenmonoxyd und Wasserdampf im Gebiet von 600-900 ÅE , 1932 .