Dynamics of intrinsic electrophysiological properties in spinal cord neurones.

The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. The intrinsic response properties of spinal neurones--determined by the particular set and distribution of voltage sensitive channels and their dynamic non-linear interactions--show a high degree of functional specialisation as reflected by the differences of intrinsic response patterns in different cell types. Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands.

[1]  T. Takahashi,et al.  Serotonin enhances a low-voltage-activated calcium current in rat spinal motoneurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  D. Kernell The Adaptation and the Relation between Discharge Frequency and Current Strength of Cat Lumbosacral Motoneurones Stimulated by Long‐Lasting Injected Currents , 1965 .

[3]  K. Krnjević,et al.  Effects of 4-aminopyridine on the action potential and the after-hyperpolarization of cat spinal motoneurons. , 1986, Canadian journal of physiology and pharmacology.

[4]  O Kiehn,et al.  Bistable firing properties of soleus motor units in unrestrained rats. , 1989, Acta physiologica Scandinavica.

[5]  J. Hounsgaard,et al.  Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials , 1999, Neuroscience.

[6]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.

[7]  A. Pickering,et al.  Whole-cell recordings from sympathetic preganglionic neurons in rat spinal cord slices , 1991, Neuroscience Letters.

[8]  S. Logan,et al.  Effects of muscarinic receptor stimulation of sympathetic preganglionic neurones of neonatal rat spinal cord in vitro , 1995, Neuropharmacology.

[9]  D. Budai,et al.  The involvement of metabotropic glutamate receptors in sensory transmission in dorsal horn of the rat spinal cord , 1998, Neuroscience.

[10]  D. Bayliss,et al.  Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. , 1992, Journal of neurophysiology.

[11]  W. Jänig Chapter 4 Spinal cord reflex organization of sympathetic systems , 1996 .

[12]  C. Woolf,et al.  Rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-caliber afferents is a predictor of action potential windup in rat spinal neurons in vitro. , 1993, Journal of neurophysiology.

[13]  F. Plum Handbook of Physiology. , 1960 .

[14]  M. Randić,et al.  Modulation of AMPA and NMDA responses in rat spinal dorsal horn neurons by trans-1-aminocyclopentane-1,3-dicarboxylic acid , 1992, Neuroscience Letters.

[15]  W. Zieglgänsberger,et al.  The effects of methionine- and leucine-enkephalin on spinal neurones of the cat , 1979, Brain Research.

[16]  T. Curran,et al.  Calcium as a modulator of the immediate-early gene cascade in neurons. , 1988, Cell calcium.

[17]  K. Krnjević,et al.  EGTA and motoneuronal after‐potentials. , 1978, Journal of Physiology.

[18]  O Kiehn,et al.  Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity , 1996, Neuroscience.

[19]  C. Polosa,et al.  Slow IPSP and the noradrenaline-induced inhibition of the cat sympathetic preganglionic neuron in vitro , 1987, Brain Research.

[20]  N. Spitzer,et al.  In vivo development of voltage-dependent ionic currents in embryonic Xenopus spinal neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  W. Rall Membrane potential transients and membrane time constant of motoneurons. , 1960, Experimental neurology.

[22]  M. Bushnell,et al.  Primary afferent and sacral dorsal horn neuron responses to vaginal probing in the cat , 1981, Neuroscience Letters.

[23]  Aron Gutman Gelfand-Tsetlin Principle of Minimal Afferentation and Bistability of Dendrites , 1994, Int. J. Neural Syst..

[24]  C. Polosa,et al.  Electrophysiological properties of sympathetic preganglionic neurons. , 1988, Annual review of physiology.

[25]  K. Krnjević,et al.  Motoneuronal after-potentials and extracellular divalent cations. , 1978, Canadian journal of physiology and pharmacology.

[26]  Yasuichiro Fujita,et al.  Dendritic spikes in normal spinal motoneurons of cats , 1989, Neuroscience Research.

[27]  N. Dun,et al.  In vitro effects of substance P on neonatal rat sympathetic preganglionic neurones. , 1988, The Journal of physiology.

[28]  B. Hille Ionic channels of excitable membranes , 2001 .

[29]  D A Price,et al.  Release of Peptide Cotransmitters in Aplysia: Regulation and Functional Implications , 1996, The Journal of Neuroscience.

[30]  P. G. Nelson,et al.  Delayed depolarization in cat spinal motoneurons. , 1967, Experimental neurology.

[31]  J. Hounsgaard,et al.  Ca2+‐Mediated Plateau Potentials in a Subpopulation of Interneurons in the Ventral Horn of the Turtle Spinal Cord , 1992, The European journal of neuroscience.

[32]  K. Beam,et al.  Development alters the expression of calcium currents in chick limb motoneurons , 1989, Neuron.

[33]  D. Lewis,et al.  A calcium-activated, nonselective cationic conductance in Aplysia silent neurons , 1988, Brain Research Bulletin.

[34]  N. Spitzer,et al.  Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. , 1997, Developmental neuroscience.

[35]  E Neher,et al.  Sodium and calcium channels in bovine chromaffin cells , 1982, The Journal of physiology.

[36]  M. Randić,et al.  Actions of (−)-baclofen on rat dorsal horn neurons , 1991, Brain Research.

[37]  R. Ryall,et al.  Reflexes to sacral parasympathetic neurones concerned with micturition in the cat , 1969, The Journal of physiology.

[38]  S. Grillner,et al.  Mechanisms underlying the serotonergic modulation of the spinal circuitry for locomotion in lamprey. , 1989, Progress in brain research.

[39]  G. Hirst,et al.  Some properties of preganglionic neurons in upper thoracic spinal cord of the cat. , 1980, Journal of neurophysiology.

[40]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[41]  W. Crill,et al.  Voltage clamp of cat motoneurone somata: properties of the fast inward current. , 1980, The Journal of physiology.

[42]  N. Dun,et al.  Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro , 1985, Brain Research.

[43]  R Llinás,et al.  Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[44]  M. Randić,et al.  Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons. , 1990, Journal of neurophysiology.

[45]  T. Sears,et al.  The development of voltage-dependent ionic conductances in murine spinal cord neurones in culture. , 1988, Canadian journal of physiology and pharmacology.

[46]  P. Stein,et al.  Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle. , 1990, Journal of neurophysiology.

[47]  N. Spitzer,et al.  Spontaneous activity: functions of calcium transients in neuronal differentiation. , 1995, Perspectives on developmental neurobiology.

[48]  B A Conway,et al.  Plateau potentials in alpha‐motoneurones induced by intravenous injection of L‐dopa and clonidine in the spinal cat. , 1988, The Journal of physiology.

[49]  R. Melzack,et al.  Skin Sensory Afterglows , 1968, Science.

[50]  Leonard K. Kaczmarek,et al.  The Neuron: Cell and Molecular Biology , 1991 .

[51]  F. Nagy,et al.  Modulation of regenerative membrane properties by stimulation of metabotropic glutamate receptors in rat deep dorsal horn neurons. , 1996, Journal of neurophysiology.

[52]  E. Barrett,et al.  Separation of two voltage‐sensitive potassium currents, and demonstration of a tetrodotoxin‐resistant calcium current in frog motoneurones. , 1976, The Journal of physiology.

[53]  R. Dubner,et al.  Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. , 1978, Journal of neurophysiology.

[54]  P. Wall,et al.  Textbook of pain , 1989 .

[55]  C. Polosa,et al.  Noradrenaline modifies sympathetic preganglionic neuron spike and afterpotential , 1986, Brain Research.

[56]  J. Hounsgaard,et al.  Calcium conductance and firing properties of spinal motoneurones in the turtle. , 1988, The Journal of physiology.

[57]  R. Miller,et al.  Tachykinins Potentiate N‐Methyl‐D‐Aspartate Responses in Acutely Isolated Neurons from the Dorsal Horn , 1993, Journal of neurochemistry.

[58]  O Kiehn,et al.  Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. , 1993, The Journal of physiology.

[59]  O. Kiehn,et al.  Functional role of plateau potentials in vertebrate motor neurons , 1998, Current Opinion in Neurobiology.

[60]  A. Thomson,et al.  Membrane Characteristics and Synaptic Responsiveness of Superficial Dorsal Horn Neurons in a Slice Preparation of Adult Rat Spinal Cord , 1989, The European journal of neuroscience.

[61]  Transmitter regulation of plateau properties in turtle motoneurons. , 1998, Journal of neurophysiology.

[62]  S. Logan,et al.  Spontaneous rhythmic activity in the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord in vitro , 1990, Neuroscience.

[63]  M. Ito,et al.  Electrical behaviour of the motoneurone membrane during intracellularly applied current steps. , 1965, The Journal of physiology.

[64]  L. Urbán,et al.  Modulation of spinal excitability: co-operation between neurokinin and excitatory amino acid neurotransmitters , 1994, Trends in Neurosciences.

[65]  S. Pfaff,et al.  Neuronal diversification: development of motor neuron subtypes , 1998, Current Opinion in Neurobiology.

[66]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[67]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[68]  C. Polosa,et al.  Heterogeneity of the afterhyperpolarization of sympathetic preganglionic neurons. , 1993, The Kurume medical journal.

[69]  E. Perl,et al.  Antidromically evoked responses from sympathetic preganglionic neurones. , 1965, The Journal of physiology.

[70]  N. Dale,et al.  Serotonergic Inhibition of the T-Type and High Voltage-Activated Ca2+ Currents in the Primary Sensory Neurons ofXenopus Larvae , 1997, The Journal of Neuroscience.

[71]  H Hultborn,et al.  Input‐output relations in the pathway of recurrent inhibition to motoneurones in the cat. , 1979, The Journal of physiology.

[72]  S. Grillner,et al.  Intrinsic function of a neuronal network — a vertebrate central pattern generator 1 Published on the World Wide Web on 8 April 1998. 1 , 1998, Brain Research Reviews.

[73]  T. Pelissier,et al.  Antinociceptive effects of Ca2+ channel blockers. , 1992, European journal of pharmacology.

[74]  J. Cazalets,et al.  Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro. , 1998, Journal of neurophysiology.

[75]  P. Schwindt,et al.  Properties of a persistent inward current in normal and TEA-injected motoneurons. , 1980, Journal of neurophysiology.

[76]  O Kiehn,et al.  Response properties of motoneurones in a slice preparation of the turtle spinal cord. , 1988, The Journal of physiology.

[77]  D. Kernell THE DELAYED DEPOLARIZATION IN CAT AND RAT MOTONEURONES. , 1964, Progress in brain research.

[78]  J. Roppolo,et al.  Spinal interneurons and preganglionic neurons in sacral autonomic reflex pathways. , 1996, Progress in brain research.

[79]  B. Gustafsson,et al.  Do γ-motoneurones lack a long-lasting afterhyperpolarization? , 1979, Brain Research.

[80]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[81]  X. Gu,et al.  Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons [published erratum appears in J Neurosci 1994 Mar;14(3):following table of contents] , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  G. Baranauskas,et al.  NMDA receptor-independent mechanisms responsible for the rate of rise of cumulative depolarization evoked by trains of dorsal root stimuli on rat spinal motoneurones , 1996, Brain Research.

[83]  K. Hara,et al.  Antinociceptive Effects of Intrathecal L-Type Calcium Channel Blockers on Visceral and Somatic Stimuli in the Rat , 1998, Anesthesia and analgesia.

[84]  P. Schwindt,et al.  A persistent negative resistance in cat lumbar motoneurons , 1977, Brain Research.

[85]  G. Bennett,et al.  An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. , 1993, Journal of neurophysiology.

[86]  K. Krnjević,et al.  Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons , 1987, Neuroscience Letters.

[87]  E. Marder,et al.  Activity-dependent changes in the intrinsic properties of cultured neurons. , 1994, Science.

[88]  N. Dun,et al.  Spontaneous and transmitter-induced rhythmic activity in neonatal rat sympathetic preganglionic neurons in vitro. , 1994, Journal of neurophysiology.

[89]  C. Polosa,et al.  Noradrenaline induces rhythmic bursting in sympathetic preganglionic neurons , 1987, Brain Research.

[90]  J. Eccles,et al.  The action potentials of the alpha motoneurones supplying fast and slow muscles , 1958, The Journal of physiology.

[91]  J. Coote,et al.  Oxytocin acts at V1 receptors to excite sympathetic preganglionic neurones in neonate rat spinal cord in vitro , 1994, Brain Research.

[92]  R. Russo,et al.  Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro , 1998, The Journal of physiology.

[93]  S. Hong,et al.  Characterization of a P-type calcium current in a crayfish motoneuron and its selective modulation by impulse activity. , 1997, Journal of neurophysiology.

[94]  G. Baranauskas,et al.  SENSITIZATION OF PAIN PATHWAYS IN THE SPINAL CORD: CELLULAR MECHANISMS , 1998, Progress in Neurobiology.

[95]  A. J. Berger,et al.  Direct excitation of rat spinal motoneurones by serotonin. , 1990, The Journal of physiology.

[96]  H. Wigström,et al.  Maintained changes in motoneuronal excitability by short‐lasting synaptic inputs in the decerebrate cat. , 1988, The Journal of physiology.

[97]  E. Contreras,et al.  Calcium channel antagonists increase morphine-induced analgesia and antagonize morphine tolerance. , 1988, European journal of pharmacology.

[98]  Patrick D. Wall,et al.  Central hyperexcitability triggered by noxious inputs , 1993, Current Opinion in Neurobiology.

[99]  R. Ryall,et al.  Recurrent inhibition in sacral parasympathetic pathways to the bladder , 1968, The Journal of physiology.

[100]  C A Del Negro,et al.  Ionic basis for serotonin-induced bistable membrane properties in guinea pig trigeminal motoneurons. , 1998, Journal of neurophysiology.

[101]  R Dubner,et al.  Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. , 1979, Journal of neurophysiology.

[102]  S. Fleetwood-Walker,et al.  Evidence for a role of metabotropic glutamate receptors in sustained nociceptive inputs to rat dorsal horn neurons , 1994, Neuropharmacology.

[103]  J. Munson,et al.  Retrograde determination of motoneuron properties and their synaptic input. , 1994, Journal of neurobiology.

[104]  K. Beam,et al.  The differentiation of excitability in embryonic chick limb motoneurons , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  A. Pickering,et al.  Excitation of sympathetic preganglionic neurons via metabotropic excitatory amino acid receptors , 1995, Neuroscience.

[106]  S Grillner,et al.  Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. , 1992, Neuroreport.

[107]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[108]  J. Baeyens,et al.  Analgesic effects of several calcium channel blockers in mice. , 1987, European journal of pharmacology.

[109]  S. Grillner,et al.  5-Hydroxytryptamine (serotonin) causes a reduction in the afterhyperpolarization following the action potential in lamprey motoneurons and premotor interneurons , 1986, Brain Research.

[110]  K. Murase,et al.  Substance P augments a persistent slow inward calcium-sensitive current in voltage-clamped spinal dorsal horn neurons of the rat , 1986, Brain Research.

[111]  M. Lowrie,et al.  The role of apoptosis and excitotoxicity in the death of spinal motoneurons and interneurons after neonatal nerve injury , 1998, Neuroscience.

[112]  R. Coghill,et al.  Wide dynamic range but not nociceptive-specific neurons encode multidimensional features of prolonged repetitive heat pain. , 1993, Journal of neurophysiology.

[113]  J. Hounsgaard,et al.  Ca(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons. , 1999, Journal of neurophysiology.

[114]  R. Llinás,et al.  Control of rhythmic firing in normal and axotomized cat spinal motoneurons. , 1977, Journal of neurophysiology.

[115]  D. Kernell,et al.  Repetitive impulse firing: comparisons between neurone models based on 'voltage clamp equations' and spinal motoneurones. , 1973, Acta physiologica Scandinavica.

[116]  M. Randić,et al.  Electrophysiological properties of rat spinal dorsal horn neurones in vitro: calcium‐dependent action potentials. , 1983, The Journal of physiology.

[117]  C. Polosa,et al.  Role of neuron soma firing in the restoration of neurotensin store in sympathetic preganglionic neuron terminals after stimulus-evoked depletion , 1994, Brain Research.

[118]  A. Fox,et al.  Two types of Ca2+ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. , 1991, The Journal of physiology.

[119]  C. Heckman,et al.  Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. , 1996, Journal of neurophysiology.

[120]  Pankaj Sah,et al.  Ca2+-activated K+ currents in neurones: types, physiological roles and modulation , 1996, Trends in Neurosciences.

[121]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[122]  R. Russo,et al.  Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels , 1994, Neuroscience.

[123]  C. Heckman,et al.  The Physiological Control of Motoneuron Activity , 1996 .

[124]  A. Pickering,et al.  5‐Hydoxytryptamine evokes depolarizations and membrane potential oscillations in rat sympathetic preganglionic neurones. , 1994, The Journal of physiology.

[125]  Y Harada,et al.  The calcium component of the action potential in spinal motoneurones of the rat. , 1983, The Journal of physiology.

[126]  J. Eccles,et al.  Intracellular recording from antidromically activated motoneurones , 1953, The Journal of physiology.

[127]  C. Polosa,et al.  Afterhyperpolarization mechanisms in cat sympathetic preganglionic neuron in vitro. , 1986, Journal of neurophysiology.

[128]  YY Peng,et al.  Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[130]  L M Mendell,et al.  Physiological properties of unmyelinated fiber projection to the spinal cord. , 1966, Experimental neurology.

[131]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[132]  D. Kernell Functional properties of spinal motoneurons and gradation of muscle force. , 1983, Advances in neurology.

[133]  Ronald Melzack,et al.  Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence , 1993, Pain.

[134]  A. Dickenson,et al.  METABOTROPIC GLUTAMATE RECEPTOR ACTIVATION CONTRIBUTES TO NOCICEPTIVE REFLEX ACTIVITY IN THE RAT SPINAL CORD IN VITRO , 1996, Neuroscience.

[135]  R. Bannister Integrative functions of the autonomic nervous system By C. McC. Brooks, K. Koizumi and A. Sato (eds.), xiv + 508 pages, illustrated, University of Tokyo Press and Elsevier/North-Holland Biomedical Press, Tokyo and Amsterdam, 1979, US $ 85.25 , 1980, Journal of the Neurological Sciences.

[136]  D. Kernell The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Different Time Course of Afterhyperpolarization , 1965 .

[137]  K. Walton,et al.  Ionic mechanisms underlying the firing properties of rat neonatal motoneurons studied in vitro , 1986, Neuroscience.

[138]  O. Kiehn,et al.  Bistability of alpha‐motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5‐hydroxytryptophan. , 1988, The Journal of physiology.

[139]  J. Hounsgaard,et al.  Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptors , 1999, The Journal of physiology.

[140]  T. Yaksh,et al.  Baclofen is antinociceptive in the spinal intrathecal space of animals. , 1978, European journal of pharmacology.

[141]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[142]  F. Nagy,et al.  Nociceptive integration in the rat spinal cord: role of non‐linear membrane properties of deep dorsal horn neurons , 1998, The European journal of neuroscience.

[143]  P. Schwindt,et al.  Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. , 1982, Journal of neurophysiology.

[144]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. , 1998, Journal of neurophysiology.

[145]  W. Rall Membrane time constant of motoneurons. , 1957, Science.

[146]  R K Powers,et al.  A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances. , 1993, Journal of neurophysiology.

[147]  J. Lopez-Garcia,et al.  Membrane Properties of Physiologically Classified Rat Dorsal Horn Neurons In Vitro: Correlation with Cutaneous Sensory Afferent Input , 1994, The European journal of neuroscience.

[148]  W. Precht,et al.  Electrical properties of frog motoneurons in the in situ spinal cord. , 1976, Journal of neurophysiology.

[149]  O. Kiehn Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour , 1991, Trends in Neurosciences.

[150]  M. Fuortes,et al.  STEPS IN THE PRODUCTION OF MOTONEURON SPIKES , 1957, The Journal of general physiology.

[151]  N. Spitzer,et al.  Role of calcium and protein kinase C in development of the delayed rectifier potassium current in xenopus spinal neurons , 1991, Neuron.

[152]  K. Walton,et al.  Electrophysiological properties of neonatal rat motoneurones studied in vitro. , 1986, The Journal of physiology.

[153]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. , 1998, Journal of neurophysiology.

[154]  Paul S. G. Stein Neurons, networks, and motor behavior , 1999 .

[155]  R. Russo,et al.  Plateau‐generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord. , 1996, The Journal of physiology.

[156]  Functional properties and axon terminations of interneurons in laminae III-V of the mammalian spinal dorsal horn in vitro. , 1992, Journal of neurophysiology.

[157]  W. Willis,et al.  Sensory Mechanisms of the Spinal Cord , 1991, Springer US.

[158]  Gary Yellen,et al.  Single Ca2+-activated nonselective cation channels in neuroblastoma , 1982, Nature.

[159]  N. Tabti,et al.  Influence of muscle cells on the development of calcium currents in Xenopus spinal neurons , 1998, Neuroscience.

[160]  I. Tulloch,et al.  Effects of substance P on neurones in the dorsal horn of the spinal cord of the cat , 1979, Brain Research.

[161]  R. J. Milne,et al.  Parasympathetic preganglionic neurons in the sacral spinal cord. , 1982, Journal of the autonomic nervous system.

[162]  D. Kernell High-Frequency Repetitive Firing of Cat Lumbosacral Motoneurones Stimulated by Long-Lasting Injected Currents , 1965 .

[163]  O. Trujillo-Cenóz,et al.  Immunohistochemical studies on the spinal dorsal horn of the turtle Chrysemys d'orbigny. , 1991, Tissue & cell.

[164]  D. Kernell The Final Common Pathway in Postural Control—Developmental Perspective , 1998, Neuroscience & Biobehavioral Reviews.

[165]  R. A. Davidoff Handbook of the spinal cord , 1983 .

[166]  N. Dale,et al.  Developmental changes in expression of ion currents accompany maturation of locomotor pattern in frog tadpoles , 1998, The Journal of physiology.

[167]  P. Cavallari,et al.  Motor neuron 'bistability'. A pathogenetic mechanism for cramps and myokymia. , 1994, Brain : a journal of neurology.

[168]  M. Nolan,et al.  Electrotonic coupling between rat sympathetic preganglionic neurones in vitro. , 1996, The Journal of physiology.

[169]  E. Kavalali,et al.  Selective potentiation of a novel calcium channel in rat hippocampal neurones. , 1994, The Journal of physiology.

[170]  T. Jessell,et al.  Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. , 1989, Journal of neurophysiology.

[171]  P. Kammermeier,et al.  Facilitation of L-type calcium current in thalamic neurons. , 1998, Journal of neurophysiology.

[172]  C. Woolf,et al.  Recent advances in the pathophysiology of acute pain. , 1989, British journal of anaesthesia.

[173]  J. Hounsgaard,et al.  Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. , 1997, Journal of neurophysiology.

[174]  Y. Jo,et al.  Electrophysiological properties of cultured neonatal rat dorsal horn neurons containing GABA and met-enkephalin-like immunoreactivity. , 1998, Journal of neurophysiology.

[175]  A. Roberts,et al.  Spinal networks controlling swimming in hatchling Xenopus tadpoles , 1997 .

[176]  C. L. Cleland,et al.  Intrinsic properties of deep dorsal horn neurons in the L6-S1 spinal cord of the intact rat. , 1995, Journal of neurophysiology.

[177]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[178]  T. Yaksh,et al.  Intrathecal baclofen and muscimol, but not midazolam, are antinociceptive using the rat-formalin model. , 1995, The Journal of pharmacology and experimental therapeutics.

[179]  A. Roberts,et al.  Neurons, Networks and Motor Behaviour , 1997 .

[180]  C. Polosa,et al.  Stabilization of the discharge rate of sympathetic preganglionic neurons. , 1982, Journal of the autonomic nervous system.

[181]  H Hultborn,et al.  Short-term plasticity in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[182]  O. Kiehn,et al.  Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? , 1997, Journal of neurophysiology.

[183]  N. Dun,et al.  Voltage-dependent potassium currents of sympathetic preganglionic neurons in neonatal rat spinal cord thin slices , 1996, Brain Research.

[184]  J. Rekling,et al.  Evidence for a persistent sodium conductance in neurons from the nucleus prepositus hypoglossi. , 1989 .

[185]  B. Gustafsson,et al.  Adaptation in a simple neurone model compared to that of spinal motoneurones. , 1973, Brain research.

[186]  G. Gebhart,et al.  Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors. , 1993, Neuroreport.

[187]  J. Chalmers,et al.  Intracellular recording from sympathetic preganglionic neurons in cat lumbar spinal cord , 1994, Brain Research.

[188]  J. Eccles,et al.  Electrophysiological studies on gamma motoneurones. , 1960, Acta physiologica Scandinavica.

[189]  N. Dun,et al.  Norepinephrine depolarizes lateral horn cells of neonatal rat spinal cord in vitro , 1985, Neuroscience Letters.

[190]  R. Russo,et al.  Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord. , 1997, The Journal of physiology.

[191]  C. Woolf,et al.  The responses recorded in vitro of deep dorsal horn neurons to direct and orthodromic stimulation in the young rat spinal cord , 1988, Neuroscience.

[192]  Intracellular recordings from sympathetic preganglionic neurones , 1979, Neuroscience Letters.

[193]  E Marder,et al.  From biophysics to models of network function. , 1998, Annual review of neuroscience.

[194]  Marc D. Binder,et al.  The Segmental motor system , 1990 .

[195]  James T. Buchanan,et al.  Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming , 1992, Neuroscience Letters.

[196]  F. Calaresu Autonomic preganglionic neurons-the final common pathway of physiological regulations. , 1982, Journal of the autonomic nervous system.

[197]  T. Hökfelt,et al.  Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons , 1975, Brain Research.

[198]  T. Jessell,et al.  Membrane properties of rat substantia gelatinosa neurons in vitro. , 1989, Journal of neurophysiology.

[199]  P. Sah,et al.  Membrane properties and synaptic potentials in rat sympathetic preganglionic neurons studied in horizontal spinal cord slices in vitro. , 1995, Journal of the autonomic nervous system.

[200]  B. Gustafsson,et al.  Regulation of repetitive firing in motoneurones by the afterhyperpolarization conductance. , 1971, Brain research.

[201]  R. Melzack,et al.  The role of NMDA receptor-operated calcium channels in persistent nociception after formalin-induced tissue injury , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[202]  C. Polosa,et al.  Slow EPSP and the depolarizing action of noradrenaline on sympathetic preganglionic neurons , 1987, Brain Research.

[203]  J. Hounsgaard,et al.  Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneurones , 1997, The Journal of physiology.

[204]  B. Gustafsson,et al.  Factors determining the variation of the afterhyperpolarization duration in cat lumbar α-motoneurons , 1985, Brain Research.

[205]  O Kiehn,et al.  Serotonin‐induced bistability of turtle motoneurones caused by a nifedipine‐sensitive calcium plateau potential. , 1989, The Journal of physiology.

[206]  N. A. Buchwald,et al.  Intracellular responses of dorsal horn cells to cutaneous and sural nerve A and C fiber stimuli. , 1971, Experimental neurology.

[207]  C. Polosa,et al.  Noradrenaline-induced afterdepolarization in cat sympathetic preganglionic neurons in vitro. , 1987, Journal of neurophysiology.

[208]  H Hultborn,et al.  Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[209]  P. Schwindt,et al.  Role of a persistent inward current in motoneuron bursting during spinal seizures. , 1980, Journal of neurophysiology.