Anisotropic blue noise sampling

Blue noise sampling is widely employed for a variety of imaging, geometry, and rendering applications. However, existing research so far has focused mainly on isotropic sampling, and challenges remain for the anisotropic scenario both in sample generation and quality verification. We present anisotropic blue noise sampling to address these issues. On the generation side, we extend dart throwing and relaxation, the two classical methods for isotropic blue noise sampling, for the anisotropic setting, while ensuring both high-quality results and efficient computation. On the verification side, although Fourier spectrum analysis has been one of the most powerful and widely adopted tools, so far it has been applied only to uniform isotropic samples. We introduce approaches based on warping and sphere sampling that allow us to extend Fourier spectrum analysis for adaptive and/or anisotropic samples; thus, we can detect problems in alternative anisotropic sampling techniques that were not yet found via prior verification. We present several applications of our technique, including stippling, visualization, surface texturing, and object distribution.

[1]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[2]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[3]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[4]  Christian Rössl,et al.  Feature Sensitive Remeshing , 2001, Comput. Graph. Forum.

[5]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[6]  Adrian Secord,et al.  Weighted Voronoi stippling , 2002, NPAR '02.

[7]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[8]  Stefan Jeschke,et al.  Dart Throwing on Surfaces , 2009, Comput. Graph. Forum.

[9]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[10]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[11]  K.B. White,et al.  Poisson Disk Point Sets by Hierarchical Dart Throwing , 2007, 2007 IEEE Symposium on Interactive Ray Tracing.

[12]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[13]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[14]  Oliver Deussen,et al.  Interactive design of authentic looking mosaics using Voronoi structures , 2005 .

[15]  George Wolberg,et al.  Digital image warping , 1990 .

[16]  Chi-Wing Fu,et al.  Dual Poisson-Disk Tiling: An Efficient Method for Distributing Features on Arbitrary Surfaces , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[18]  S. A. Lloyd An optimization approach to relaxation labelling algorithms , 1983, Image Vis. Comput..

[19]  M. Balzer,et al.  Capacity-Constrained Voronoi Diagrams in Finite Spaces , 2008 .

[20]  Ares Lagae,et al.  Poisson Sphere Distributions , 2006 .

[21]  D. Culler,et al.  Comparison of methods , 2000 .

[22]  Ares Lagae,et al.  An alternative for Wang tiles: colored edges versus colored corners , 2006, TOGS.

[23]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[24]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[25]  Pheng-Ann Heng,et al.  Structure-aware halftoning , 2008, SIGGRAPH 2008.

[26]  Michael Balzer,et al.  Capacity-Constrained Voronoi Diagrams in Continuous Spaces , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[27]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[28]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Alexander M. Bronstein,et al.  Parallel algorithms for approximation of distance maps on parametric surfaces , 2008, TOGS.

[30]  H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics , 1996 .

[31]  Li-Yi Wei Parallel Poisson disk sampling , 2008, SIGGRAPH 2008.

[32]  Bruno Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[33]  Ares Lagae,et al.  A procedural object distribution function , 2005, TOGS.

[34]  Li-Yi Wei Multi-class blue noise sampling , 2010, ACM Trans. Graph..

[35]  Yunjin Lee,et al.  Feature‐guided Image Stippling , 2008, Comput. Graph. Forum.

[36]  Li-Yi Wei,et al.  Parallel Poisson disk sampling with spectrum analysis on surfaces , 2010, ACM Trans. Graph..

[37]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[38]  Dani Lischinski,et al.  Recursive Wang tiles for real-time blue noise , 2006, ACM Trans. Graph..

[39]  V. Ostromoukhov Sampling with polyominoes , 2007, SIGGRAPH 2007.

[40]  Yan Fu,et al.  Direct sampling on surfaces for high quality remeshing , 2008, SPM '08.

[41]  Bernd Hamann,et al.  Anisotropic Noise Samples , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Chi-Wing Fu,et al.  Fast capacity constrained Voronoi tessellation , 2010, I3D '10.

[43]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, SIGGRAPH 2006.

[44]  Eugene Fiume,et al.  Hierarchical Poisson disk sampling distributions , 1992 .

[45]  Oliver Deussen,et al.  Beyond Stippling 
— Methods for Distributing Objects on the Plane , 2003, Comput. Graph. Forum.

[46]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[47]  Roch Roy,et al.  Spectral analysis for a random process on the sphere , 1972 .