Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids

Recent work on mesoporous silica formation using cationic and non-ionic templates has unveiled a large number of anion effects. Anions are seen to change the hydrolysis rates of the silicate precursors, affecting the surface properties and morphologies of the final products after calcination, and they often improve the hydrothermal stability of the silica materials. These advances are reviewed in connection with the Hofmeister series of anions and the known effects of anions on the self-assembly and phase behavior of cationic and non-ionic surfactants.

[1]  Yizhak Marcus,et al.  Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K , 1991 .

[2]  J. Czapkiewicz,et al.  Relative scale of free energy of transfer of anions from water to 1,2-dichloroethane , 1980 .

[3]  Ji Man Kim,et al.  Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects , 1999 .

[4]  M. Zulauf,et al.  Lower consolute boundaries of a poly(oxyethylene) surfactant in aqueous solutions of monovalent salts , 1985 .

[5]  Carmay Lim,et al.  Theory of Ionic Hydration: Insights from Molecular Dynamics Simulations and Experiment , 1999 .

[6]  P. Ekwall Composition, Properties and Structures of Liquid Crystalline Phases in Systems of Amphiphilic Compounds , 1975 .

[7]  J. Rathman,et al.  Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates , 1996 .

[8]  L. Bonneviot,et al.  Ion mediation and surface charge density in phase transition of micelle templated silica , 2001 .

[9]  G. Karlstroem,et al.  Phase diagrams of nonionic polymer-water systems. Experimental and theoretical studies of the effects of surfactants and other cosolutes , 1990 .

[10]  B. Ninham,et al.  Surface Tension of Electrolytes: Specific Ion Effects Explained by Dispersion Forces , 2001 .

[11]  T. Shikata,et al.  Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions , 1988 .

[12]  M. Chaplin,et al.  A proposal for the structuring of water. , 2000, Biophysical chemistry.

[13]  R. Ryoo,et al.  Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process , 1997 .

[14]  S. Bagshaw The effect of dilute electrolytes on the formationof non-ionically templated [Si]-MSU-X mesoporous silica molecularsieves , 2001 .

[15]  J. Patarin,et al.  F− mediated synthesis of mesoporous silica with ionic- and non-ionic surfactants. A new templating pathway , 1997 .

[16]  E. Prouzet,et al.  Assembly of Mesoporous Molecular Sieves Containing Wormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by Synthesis Temperature† , 1997 .

[17]  T. Okada,et al.  Evaluation of Electrostatic Potential Induced by Anion-Dominated Partition into Zwitterionic Micelles and Origin of Selectivity in Anion Uptake , 2000 .

[18]  Shang-Bin Liu,et al.  Counterion effect in acid synthesis of mesoporous silica materials , 2000 .

[19]  A. G. Oertli,et al.  Alkaline Lyotropic Silicate−Surfactant Liquid Crystals , 1997 .

[20]  Effect of platinum salts on mesoporous silica materials synthesized via a non-ionic surfactant templating route , 2001 .

[21]  Dongyuan Zhao,et al.  Morphological Control of Highly Ordered Mesoporous Silica SBA-15 , 2000 .

[22]  K. Torigoe,et al.  Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template , 1995 .

[23]  V. Soldi,et al.  Interfacial compositions of cationic and mixed non-ionic micelles by chemical trapping: a new method for characterizing the properties of amphiphilic aggregates , 2001 .

[24]  G. Øye,et al.  Synthesis, characterization and potential applications of new materials in the mesoporous range. , 2001, Advances in colloid and interface science.

[25]  P. Kooyman,et al.  A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway , 2000 .

[26]  J. Patarin,et al.  Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica , 1999 .

[27]  P. Edwards,et al.  The polarizabilities of species present in ionic solutions , 1992 .

[28]  D. Zhao,et al.  Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers , 2001 .

[29]  P. Macdonald,et al.  Investigation of anion binding to neutral lipid membranes using deuterium NMR , 1992 .

[30]  P. V. Hippel Neutral Salt Effects on the Conformational Stability of Biological Macromolecules , 1975 .

[31]  G. Øye,et al.  Synthesis and characterization of siliceous and aluminum-containing mesoporous materials from different surfactant solutions , 1999 .

[32]  V. Soldi,et al.  Arenediazonium Salts: New Probes of the Interfacial Compositions of Association Colloids. 6. Relationships between Interfacial Counterion and Water Concentrations and Surfactant Headgroup Size, Sphere-to-Rod Transitions, and Chemical Reactivity in Cationic Micelles† , 2000 .

[33]  N. Hedin,et al.  Fast Diffusion of the Cl- Ion in the Headgroup Region of an Oppositely Charged Micelle. A 35Cl NMR Spin Relaxation Study , 2000 .

[34]  G. Bertrand,et al.  Calorimetric observations of the sphere-rod transition of tetradecyltrimethylammonium bromide and sodium dodecyl sulfate: Effects of electrolytes and nonelectrolytes at 25 and 45°c , 1992 .

[35]  L. Romsted,et al.  Arenediazonium Salts: New Probes of the Compositions of Association Colloids. 7. Average Hydration Numbers and Cl- Concentrations in the Surfactant Film of Nonionic C12E5/Octane/Water Macroemulsions: Temperature and NaCl Concentration Effects† , 2000 .

[36]  F. Renzo,et al.  Textural control of micelle-templated mesoporous silicates: the effects of co-surfactants and alkalinity , 1999 .

[37]  K. D. Collins,et al.  The Hofmeister effect and the behaviour of water at interfaces , 1985, Quarterly Reviews of Biophysics.

[38]  B. Ninham,et al.  Ion Binding and Ion Specificity: The Hofmeister Effect and Onsager and Lifshitz Theories , 1997 .

[39]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.

[40]  Jackie Y. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[41]  Gregory G. Warr,et al.  THERMODYNAMICS OF ION EXCHANGE SELECTIVITY AT INTERFACES , 1995 .

[42]  J. M. Nicol,et al.  Cooperative organization of inorganic-surfactant and biomimetic assemblies , 1995, Science.

[43]  Bradley F. Chmelka,et al.  Fluoride-Induced Hierarchical Ordering of Mesoporous Silica in Aqueous Acid-Syntheses , 1999 .

[44]  A. L. Underwood,et al.  Counterion lyotropy and micelle formation , 1987 .

[45]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[46]  Ji Man Kim,et al.  Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution , 2000 .

[47]  P. Bartlett,et al.  Lyotropic Liquid Crystalline Properties of Nonionic Surfactant/H2O/Hexachloroplatinic Acid Ternary Mixtures Used for the Production of Nanostructured Platinum , 1998 .

[48]  R. L. Baldwin,et al.  How Hofmeister ion interactions affect protein stability. , 1996, Biophysical journal.

[49]  D. Rubingh,et al.  Cationic surfactants : physical chemistry , 1990 .

[50]  Paschalis Alexandridis,et al.  Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (poloxamer) , 1997 .

[51]  The syntheses of mesoporous molecular sieves in fluoride medium , 1996 .

[52]  C. Mou,et al.  Counterion and alcohol effect in the formation of mesoporous silica , 2001 .

[53]  C. Mou,et al.  Control of mesostructure and morphology of surfactant-templated silica in a mixed surfactant system , 1999 .

[54]  D. Zhao,et al.  Multiphase assembly of mesoporous-macroporous membranes , 1999 .

[55]  D. H. Napper,et al.  Measurement of the Selective Adsorption of Ions at Air/Surfactant Solution Interfaces , 1994 .

[56]  W. Hamilton,et al.  EFFECT OF COUNTERION COMPETITION ON MICELLAR GROWTH HORIZONS FOR CETYLTRIMETHYLAMMONIUM MICELLAR SURFACES : ELECTROSTATICS AND SPECIFIC BINDING , 1997 .

[57]  F. Quina,et al.  Ion Binding and Reactivity at Charged Aqueous Interfaces , 1991 .

[58]  Ulf Olsson,et al.  Salt Effects on Nonionic Microemulsions Are Driven by Adsorption/Depletion at the Surfactant Monolayer , 1995 .

[59]  P. A. Reynolds,et al.  Shear and salt effects on the structure of MCM-41 synthesis gels , 1998 .

[60]  E. Landau,et al.  The Hofmeister series: salt and solvent effects on interfacial phenomena , 1997, Quarterly Reviews of Biophysics.

[61]  S. Komarneni,et al.  Control over Microporosity of Ordered Microporous−Mesoporous Silica SBA-15 Framework under Microwave-Hydrothermal Conditions: Effect of Salt Addition , 2001 .

[62]  N. B. Milestone,et al.  Mesoporous [M]-MSU-x metallo-silicate catalysts by non-ionic polyethylene oxide surfactant templating: Acid [N0(N+)X−I+] and base (N0M+I−) catalysed pathways , 1998 .

[63]  S. Ikeda,et al.  Characteristics of rodlike micelles of cetyltrimethylammonium chloride in aqueous NaCl solutions: Their flexibility and the scaling laws in dilute and semidilute regimes , 1987 .

[64]  L. Bonneviot,et al.  Anion Effect on Surface Density of Silanolate Groups in As-Synthesized Mesoporous Silicas , 1998 .

[65]  S. Bagshaw Bimodal pore systems in non-ionically templated [Si]-MSU-X mesoporous silica through biomimetic synthesis in weakly ionic solutions , 1999 .

[66]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[67]  Jianlin Shi,et al.  Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica , 2001 .

[68]  James S. Johnson,et al.  Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering , 1992 .