Rapid-Scan Super-Resolution Observations of a Cyclic Supercell with a Dual-Polarization WSR-88D

Abstract In recent years, there has been widespread interest in collecting and analyzing rapid updates of radar data in severe convective storms. To this end, conventional single-polarization rapid-scan radars and phased array radar systems have been employed in numerous studies. However, rapid updates of dual-polarization radar data in storms are not widely available. For this study, a rapid scanning strategy is developed for the polarimetric prototype research Weather Surveillance Radar-1988 Doppler (WSR-88D) radar in Norman, Oklahoma (KOUN), which emulates the future capabilities of a polarimetric multifunction phased array radar (MPAR). With this strategy, data are collected over an 80° sector with 0.5° azimuthal spacing and 250-m radial resolution (“super resolution”), with 12 elevation angles. Thus, full volume scans over a limited area are collected every 71–73 s. The scanning strategy was employed on a cyclic nontornadic supercell storm in western Oklahoma on 1 June 2008. The evolution of the pola...

[1]  Erik N. Rasmussen,et al.  Direct Surface Thermodynamic Observations within the Rear-Flank Downdrafts of Nontornadic and Tornadic Supercells , 2002 .

[2]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[3]  Alexander V. Ryzhkov,et al.  Storm-Relative Helicity Revealed from Polarimetric Radar Measurements , 2009 .

[4]  Richard L. Thompson,et al.  Effective Storm-Relative Helicity and Bulk Shear in Supercell Thunderstorm Environments , 2007 .

[5]  John M. Esterheld,et al.  Discriminating between Tornadic and Non-Tornadic Supercells: A New Hodograph Technique , 2008, E-Journal of Severe Storms Meteorology.

[6]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[7]  Kelvin K. Droegemeier,et al.  The Dependence of Numerically Simulated Cyclic Mesocyclogenesis upon Environmental Vertical Wind Shear , 2005 .

[8]  Vincent T. Wood,et al.  Improved Detection of Severe Storms Using Experimental Fine-Resolution WSR-88D Measurements , 2005 .

[9]  Validation of attenuation correction at X band performed with collocated S-band polarimetric radar , 2009 .

[10]  Alexander V. Ryzhkov,et al.  Polarimetric Signatures in Supercell Thunderstorms , 2008 .

[11]  Edward A. Brandes,et al.  Flow in Severe Thunderstorms Observed bu Dual-Doppler Radar , 1977 .

[12]  G. Foote,et al.  A Study of Hail Growth Utilizing Observed Storm Conditions. , 1984 .

[13]  M. Sachidananda,et al.  Rain Rate Estimates from Differential Polarization Measurements , 1987 .

[14]  Robert R. Lee,et al.  New WSR-88D Volume Coverage Pattern 12: Results of Field Tests , 2005 .

[15]  P. Ray,et al.  Observations Related to the Rotational Dynamics of the 20 May 1977 Tornadic Storms , 1987 .

[16]  Andrew L. Pazmany,et al.  Observations of Tornadoes and Other Convective Phenomena with a Mobile, 3-mm Wavelength, Doppler Radar: The Spring 1999 Field Experiment , 2000 .

[17]  Robert E. McIntosh,et al.  Studies of the Substructure of Severe Convective Storms Using a Mobile 3-mm-Wavelength Doppler Radar , 1995 .

[18]  Dusan Zrnic,et al.  Phased Array Radar Polarimetry for Weather Sensing: Challenges and Opportunities , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Charles A. Doswell,et al.  The Tornado : its structure, dynamics, prediction, and hazards , 1993 .

[20]  Travis M. Smith,et al.  Rapid Sampling of Severe Storms by the National Weather Radar Testbed Phased Array Radar , 2008 .

[21]  N. Balakrishnan,et al.  Use of Polarization to Characterize Precipitation and Discriminate Large Hail , 1990 .

[22]  Michael P. Foster,et al.  The Joint Polarization Experiment: Polarimetric Radar in Forecasting and Warning Decision Making , 2005 .

[23]  Francesc Junyent,et al.  Close-Range Observations of Tornadoes in Supercells Made with a Dual-Polarization, X-Band, Mobile Doppler Radar , 2007 .

[24]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[25]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[26]  Alexander V. Ryzhkov,et al.  Validation of Polarimetric Hail Detection , 2006 .

[27]  D. Dowell,et al.  The 8 June 1995 McLean, Texas, Storm. Part II: Cyclic Tornado Formation, Maintenance, and Dissipation , 2002 .

[28]  S. Nelson,et al.  The Influence of Storm Flow Structure on Hail Growth. , 1983 .

[29]  Paul Krehbiel,et al.  A GPS‐based three‐dimensional lightning mapping system: Initial observations in central New Mexico , 1999 .

[30]  P. Markowski,et al.  Descending Reflectivity Cores in Supercell Thunderstorms Observed by Mobile Radars and in a High-Resolution Numerical Simulation , 2009 .

[31]  Dusan Zrnic,et al.  Phased Array Radar Polarimetry for Weather Sensing: A Theoretical Formulation for Bias Corrections , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Swarndeep Gill,et al.  Finescale Radar Observations of the Dimmitt, Texas (2 June 1995), Tornado , 2000 .

[33]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[34]  W. D. Rust,et al.  Polarimetric and Electrical Characteristics of a Lightning Ring in a Supercell Storm , 2010 .

[35]  C. Finley,et al.  Thermodynamic Analysis of Supercell Rear-Flank Downdrafts from Project ANSWERS , 2007 .

[36]  Erik N. Rasmussen,et al.  A Preliminary Survey of Rear-Flank Descending Reflectivity Cores in Supercell Storms , 2006 .

[37]  Erik N. Rasmussen,et al.  Design and Deployment of a Portable, Pencil-Beam, Pulsed, 3-cm Doppler Radar , 1997 .

[38]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[39]  D. J. Musil,et al.  Case Study of a Hailstorm in Colorado. Part II: Particle Growth Processes at Mid-Levels Deduced from in-situ Measurements , 1982 .

[40]  J. R. Colquhoun,et al.  Relationships between Tornado Intensity and Various Wind and Thermodynamic Variables , 1996 .

[41]  J. Schroeder,et al.  High-Resolution Dual-Doppler Analyses of the 29 May 2001 Kress, Texas, Cyclic Supercell , 2006 .

[42]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[43]  K. Aydin,et al.  A computational study of polarimetric radar observables in hail , 1990, IEEE Transactions on Geoscience and Remote Sensing.

[44]  H. R. Pruppacher,et al.  A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air , 1970 .

[45]  V. N. Bringi,et al.  Dual-Polarization observations of Microbursts Associated with Intense Convection: The 20 July Storm during the MIST Project , 1988 .

[46]  J. W. Conway,et al.  A Study of Embryo Production and Hail Growth Using Dual-Doppler and Multiparameter Radars , 1993 .

[47]  E. Rasmussen,et al.  A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters , 1998 .

[48]  E. Rasmussen,et al.  A Statistical Study of the Association of DRCs with Supercells and Tornadoes , 2007 .

[49]  Conrad L. Ziegler,et al.  Hail Growth in an Oklahoma Multicell Storm , 1983 .

[50]  A. Illingworth,et al.  Polarization radar studies of precipitation development in convective storms , 1987 .

[51]  K. Browning Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds , 1964 .

[52]  Dusan S. Zrnic,et al.  Three-body scattering produces precipitation signature of special diagnostic value , 1987 .

[53]  D. Heimann,et al.  A Squall Line in Southern Germany: Kinematics and Precipitation Formation as Deduced by Advanced Polarimetric and Doppler Radar Measurements , 1991 .

[54]  A. R. Jameson Microphysical Interpretation of Multiparameter Radar Measurements in Rain. Part III: Interpretation and Measurement of Propagation Differential Phase Shift between Orthogonal Linear Polarizations , 1985 .

[55]  V. N. Bringi,et al.  The Effects of Three-Body Scattering on Differential Reflectivity Signatures , 2000 .

[56]  D. Burgess,et al.  A Dual-Polarization-Radar-Based Assessment of the 8 May 2003 Oklahoma City Area Tornadic Supercell , 2008 .

[57]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[58]  C. Kessinger,et al.  A Study of Thunderstorm Microphysics with Multiparameter Radar and Aircraft Observations , 1995 .

[59]  Joshua Wurman,et al.  An Inexpensive, Mobile, Rapid-Scan Radar , 2001 .

[60]  Vincent T. Wood,et al.  Improved Tornado Detection Using Simulated and Actual WSR-88D Data with Enhanced Resolution , 2002 .

[61]  K. Droegemeier,et al.  The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters , 2002 .

[62]  Paul H. Herzegh,et al.  Observing Precipitation through Dual-Polarization Radar Measurements , 1992 .

[63]  C. Doswell,et al.  Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis , 1979 .

[64]  Louis J. Wicker,et al.  High-Resolution, Mobile Doppler Radar Observations of Cyclic Mesocyclogenesis in a Supercell , 2008 .

[65]  W. Cotton,et al.  An Intense, Quasi-Steady Thunderstorm over Mountainous Terrain. Part II: Doppler Radar Observations of the Storm Morphological Structure , 1982 .

[66]  D. Dowell,et al.  The 8 June 1995 McLean, Texas, Storm. Part I: Observations of Cyclic Tornadogenesis , 2002 .

[67]  Erik N. Rasmussen,et al.  THE SHARED MOBILE ATMOSPHERIC RESEARCH AND TEACHING RADAR A Collaboration to Enhance Research and Teaching , 2005 .

[68]  W. Petersen,et al.  Polarimetric Radar Observations of Hail Formation , 2001 .

[69]  A. Ryzhkov,et al.  Polarimetric Tornado Detection , 2005 .

[70]  V. N. Bringi,et al.  Multiparameter Radar Study of a Microburst: Comparison with Model Results , 1989 .

[71]  Lawrence D. Carey,et al.  CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado , 1998 .

[72]  K. Droegemeier,et al.  A Numerical Simulation of Cyclic Mesocyclogenesis , 1999 .

[73]  R. Vogt,et al.  Agile-Beam Phased Array Radar for Weather Observations , 2007 .

[74]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[75]  Christopher C. Weiss,et al.  The Structure of Tornadoes near Attica, Kansas, on 12 May 2004: High-Resolution, Mobile, Doppler Radar Observations , 2007 .

[76]  Andrew J. Heymsfield,et al.  A Comparative Study of the Rates of Development of Potential Graupel and Hail Embryos in High Plains Storms. , 1982 .

[77]  Jerry M. Straka,et al.  Enhanced polarimetric radar signatures above the melting level in a supercell storm , 2002 .

[78]  Brynn W. Kerr,et al.  Storm-Relative Winds and Helicity in the Tornadic Thunderstorm Environment , 1996 .

[79]  I. J. Caylor,et al.  Radar Observations and Modelling of Warm Rain Initiation , 2007 .

[80]  K. Browning,et al.  Airflow and hail growth in supercell storms and some implications for hail suppression , 1976 .

[81]  A. Ryzhkov The Impact of Beam Broadening on the Quality of Radar Polarimetric Data , 2007 .

[82]  Alexander V. Ryzhkov,et al.  THE JOINT POLARIZATION EXPERIMENT Polarimetric Rainfall Measurements and Hydrometeor Classification , 2005 .

[83]  Erik N. Rasmussen,et al.  Tornadogenesis Resulting from the Transport of Circulation by a Downdraft: Idealized Numerical Simulations , 2003 .

[84]  Richard L. Thompson,et al.  Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle , 2003 .