Local electric dipole moments: A generalized approach

We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, “naively” defined local dipole moments are origin‐dependent. Inspired by previous work based on Bader's atoms‐in‐molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin‐independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.

[1]  Wilfried Langenaeker,et al.  Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density , 2002, J. Comput. Chem..

[2]  K. Clays,et al.  Extended Threefold‐Symmetric Second‐Harmonic‐Generation Chromophores Based on 1,3,5‐Trisubstituted Benzene Complexes , 2015 .

[3]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[4]  A. Shluger,et al.  Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms. , 2014, ACS nano.

[5]  Ernest R. Davidson,et al.  Electronic Population Analysis of Molecular Wavefunctions , 1967 .

[6]  F. Weinhold,et al.  Natural population analysis , 1985 .

[7]  E. Davidson,et al.  Local spin II , 2002 .

[8]  J. Neugebauer,et al.  Part and whole in wavefunction/DFT embedding , 2015, Theoretical Chemistry Accounts.

[9]  M. Reiher,et al.  Spin–Spin interactions in polynuclear transition-metal complexes , 2008 .

[10]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[11]  E. Davidson,et al.  Population analyses that utilize projection operators , 2003 .

[12]  B. Kirchner,et al.  Voronoi dipole moments for the simulation of bulk phase vibrational spectra. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[14]  Mark A. Spackman,et al.  Atomic charges and electron density partitioning , 1985 .

[15]  L. Kronik,et al.  Reliable Energy Level Alignment at Physisorbed Molecule–Metal Interfaces from Density Functional Theory , 2015, Nano letters.

[16]  I. Mayer Local spins: An alternative treatment for single determinant wave functions , 2007 .

[17]  Bryan M. Wong,et al.  Color Detection Using Chromophore-Nanotube Hybrid Devices , 2009, Nano letters.

[18]  Bryan M. Wong,et al.  Functionalization of single-wall carbon nanotubes with chromophores of opposite internal dipole orientation. , 2013, ACS applied materials & interfaces.

[19]  R. Bader,et al.  Virial partitioning of charge distributions and properties of diatomic hydrides , 1973 .

[20]  S. Reich,et al.  Carbon nanotubes as substrates for molecular spiropyran-based switches , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Todd A. Keith,et al.  Properties of atoms in molecules: additivity and transferability of group polarizabilities , 1992 .

[22]  Marcella Iannuzzi,et al.  Raman spectra from ab initio molecular dynamics and its application to liquid S-methyloxirane. , 2014, The Journal of chemical physics.

[23]  S. Luber Local electric dipole moments for periodic systems via density functional theory embedding. , 2014, The Journal of chemical physics.

[24]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[25]  R. Bader,et al.  Theoretical development of a virial relationship for spatially defined fragments of molecular systems , 1973 .

[26]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[27]  S. Reich,et al.  Tuning the interaction between carbon nanotubes and dipole switches: the influence of the change of the nanotube–spiropyran distance , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  E. Davidson,et al.  Local Spin III: Wave Function Analysis along a Reaction Coordinate, H Atom Abstraction, and Addition Processes of Benzyne , 2002 .

[29]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[30]  R. Bader,et al.  Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties , 1972 .

[31]  Keith E. Laidig,et al.  PROPERTIES OF ATOMS IN MOLECULES : ATOMIC POLARIZABILITIES , 1990 .

[32]  P. Macchi,et al.  PolaBer: a program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning , 2014 .

[33]  Lynn Groß,et al.  GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments , 2016, J. Comput. Chem..

[34]  Kenneth B. Wiberg,et al.  Properties of atoms in molecules: Dipole moments and transferability of properties , 1987 .

[35]  Ronald J. Gillespie,et al.  Understanding and Interpreting Molecular Electron Density Distributions , 2002 .

[36]  J. Neaton,et al.  Adsorption-Induced Solvent-Based Electrostatic Gating of Charge Transport through Molecular Junctions. , 2014, Nano letters.

[37]  A. J. Weymouth,et al.  CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces. , 2014, Physical review letters.

[38]  J. Mevellec,et al.  Electron-rich Fe(II) and Fe(III) organoiron σ-alkynyl complexes bearing a functional aryl group. Vibrational spectroscopic investigations of the substituent effect on the CC triple bond , 2002 .

[39]  M. Reiher,et al.  Comparative analysis of local spin definitions. , 2005, The Journal of chemical physics.

[40]  P. Gopalan,et al.  Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes. , 2007, Physical review letters.

[41]  Frank R. Wagner,et al.  The CO/Pt(111) puzzle , 2000 .

[42]  E. Davidson,et al.  Semiempirical local spin: Theory and implementation of the ZILSH method for predicting Heisenberg exchange constants of polynuclear transition metal complexes , 2003 .

[43]  Pedro Salvador,et al.  Toward a Unique Definition of the Local Spin. , 2012, Journal of chemical theory and computation.

[44]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[45]  J L Finney,et al.  Calculation of protein volumes: an alternative to the Voronoi procedure. , 1982, Journal of molecular biology.

[46]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[47]  Christoph R. Jacob,et al.  Subsystem density‐functional theory , 2014 .

[48]  Barbara Kirchner,et al.  Solvent effects on electronic properties from Wannier functions in a dimethyl sulfoxide/water mixture. , 2004, The Journal of chemical physics.

[49]  Keith R. Roby,et al.  Quantum theory of chemical valence concepts , 1974 .

[50]  E. Wolf,et al.  Influence of dipole-dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[51]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .

[52]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[53]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[54]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[55]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[56]  Barbara Kirchner,et al.  Computing vibrational spectra from ab initio molecular dynamics. , 2013, Physical chemistry chemical physics : PCCP.

[57]  R. Bader,et al.  Properties of atoms in crystals: Dielectric polarization , 2001 .

[58]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[59]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  C. Cramer,et al.  Reduced and quenched polarizabilities of interior atoms in molecules , 2013 .