Biological magnetometry: torque on superparamagnetic beads in magnetic fields.

Superparamagnetic beads are widely used in biochemistry and single-molecule biophysics, but the nature of the anisotropy that enables the application of torques remains controversial. To quantitatively investigate the torques experienced by superparamagnetic particles, we use a biological motor to rotate beads in a magnetic field and demonstrate that the underlying potential is π periodic. In addition, we tether a bead to a single DNA molecule and show that the angular trap stiffness increases nonlinearly with magnetic field strength. Our results indicate that the superparamagnetic beads' anisotropy derives from a nonuniform intrabead distribution of superparamagnetic nanoparticles.

[1]  Jeremy Jones,et al.  Superparamagnetism , 2013, Radiopaedia.org.

[2]  C. Dekker,et al.  Magnetic Forces and DNA Mechanics in Multiplexed Magnetic Tweezers , 2012, PloS one.

[3]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[4]  Yoshiyuki Sowa,et al.  Bacterial flagellar motor , 2004, Quarterly Reviews of Biophysics.

[5]  Zach DeVito,et al.  Opt , 2017 .

[6]  M. S. Pedersen,et al.  The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles , 1995 .

[7]  J. Lipfert,et al.  A method to track rotational motion for use in single-molecule biophysics. , 2011, The Review of scientific instruments.

[8]  Zhongbo Yu,et al.  A force calibration standard for magnetic tweezers. , 2014, The Review of scientific instruments.

[9]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[10]  N. Cozzarelli,et al.  DNA overwinds when stretched , 2006, Nature.

[11]  M. Prins,et al.  Controlled torque on superparamagnetic beads for functional biosensors. , 2009, Biosensors & bioelectronics.

[12]  Jaap M J den Toonder,et al.  Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review. , 2014, Lab on a chip.

[13]  W. Coffey,et al.  Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown , 2012, 1209.0298.

[14]  Mark Field,et al.  Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry , 2007 .

[15]  Wesley P. Wong,et al.  The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. , 2006, Optics express.

[16]  Peter Searson,et al.  Magnetic tweezers measurement of single molecule torque. , 2009, Nano letters.

[17]  B. Tanner,et al.  Determination of the magnetic anisotropy of ferrofluids from torque magnetometry data , 1983 .

[18]  M. Valentine,et al.  High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments. , 2012, The Review of scientific instruments.

[19]  Craig N. Lumb,et al.  Flagellar Hook Flexibility Is Essential for Bundle Formation in Swimming Escherichia coli Cells , 2012, Journal of bacteriology.

[20]  M. Popovici,et al.  Magnetic behaviour of iron oxide nanoparticles dispersed in a silica matrix , 2003 .

[21]  Francesco Mosconi,et al.  Soft magnetic tweezers: a proof of principle. , 2011, The Review of scientific instruments.

[22]  C. Johansson,et al.  The influence of magnetic anisotropy on the magnetization of small ferromagnetic particles , 1993 .

[23]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[24]  Jie Yan,et al.  Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. , 2011, Biophysical journal.

[25]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .

[26]  Francesco S. Pavone,et al.  Spin absorption, windmill, and magneto-optic effects in optical angular momentum transfer , 2004 .

[27]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[28]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[29]  Francesco Pedaci,et al.  Torque spectroscopy for the study of rotary motion in biological systems. , 2015, Chemical reviews.

[30]  G. Fonnum,et al.  Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy , 2005 .

[31]  M. Respaud Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law , 1999 .

[32]  Nynke H. Dekker,et al.  Studying genomic processes at the single-molecule level: introducing the tools and applications , 2012, Nature Reviews Genetics.

[33]  M. Prins,et al.  Torsion profiling of proteins using magnetic particles. , 2013, Biophysical journal.

[34]  Nynke H Dekker,et al.  Quantitative modeling and optimization of magnetic tweezers. , 2009, Biophysical journal.

[35]  Nynke H. Dekker,et al.  Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. , 2012, Nano letters.

[36]  M. Bandyopadhyay Thermodynamic properties of magneto-anisotropic nanoparticles , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Jacob W J Kerssemakers,et al.  Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. , 2010, Biophysical journal.

[38]  Ralf Seidel,et al.  Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. , 2009, Physical review letters.

[39]  M. S. Pedersen,et al.  Magnetic properties of magnetic liquids with iron-oxide particles — The influence of anisotropy and interactions , 1997 .