Retroelements and their impact on genome evolution and functioning

[1]  E. Kirkness,et al.  Mobile elements create structural variation: analysis of a complete human genome. , 2009, Genome research.

[2]  A. Buzdin,et al.  Human-Specific Modulation of Transcriptional Activity Provided by Endogenous Retroviral Insertions , 2009, Journal of Virology.

[3]  J. Casacuberta,et al.  The Frequent Transcriptional Readthrough of the Tobacco Tnt1 Retrotransposon and Its Possible Implications for the Control of Resistance Genes , 2009, Journal of Molecular Evolution.

[4]  D. Gautheret,et al.  Using Alu elements as polyadenylation sites: A case of retroposon exaptation. , 2009, Molecular biology and evolution.

[5]  M. Belfort,et al.  The take and give between retrotransposable elements and their hosts. , 2008, Annual review of genetics.

[6]  H. Kazazian,et al.  Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites , 2008, Cell.

[7]  Yi Xing,et al.  Diverse Splicing Patterns of Exonized Alu Elements in Human Tissues , 2008, PLoS genetics.

[8]  André Corvelo,et al.  Exon creation and establishment in human genes , 2008, Genome Biology.

[9]  G. Ast,et al.  Intronic Alus Influence Alternative Splicing , 2008, PLoS genetics.

[10]  O. R. Borodulina,et al.  Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. , 2008, RNA.

[11]  P. Georgiev,et al.  Study of functional interaction between three copies of the insulator from the MDG4 transposable element in the model system of the miniwhite gene of Drosophila melanogaster , 2008, Doklady Biochemistry and Biophysics.

[12]  B. Tian,et al.  Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes , 2008, Nucleic acids research.

[13]  I. King Jordan,et al.  Retroviral promoters in the human genome , 2008, Bioinform..

[14]  T. Eickbush,et al.  The diversity of retrotransposons and the properties of their reverse transcriptases. , 2008, Virus research.

[15]  D. Landsman,et al.  Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA , 2008, BMC Genomics.

[16]  D. Min,et al.  Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element , 2008, Archives of Virology.

[17]  R. Martienssen,et al.  Epigenetic interactions between transposons and genes: lessons from plants. , 2008, Current opinion in genetics & development.

[18]  P. Deininger,et al.  The impact of multiple splice sites in human L1 elements. , 2008, Gene.

[19]  N. Saitou,et al.  Possible involvement of SINEs in mammalian-specific brain formation , 2008, Proceedings of the National Academy of Sciences.

[20]  Ivan B. N. Clark,et al.  Molecular dissection of Penelope transposable element regulatory machinery , 2008, Nucleic acids research.

[21]  P. Deininger,et al.  Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. , 2008, Genome research.

[22]  G. Hannon,et al.  Conserved themes in small-RNA-mediated transposon control. , 2008, Trends in cell biology.

[23]  Jean-Nicolas Volff,et al.  Transposable elements as drivers of genomic and biological diversity in vertebrates , 2008, Chromosome Research.

[24]  Andrew B. Conley,et al.  Human cis natural antisense transcripts initiated by transposable elements. , 2008, Trends in genetics : TIG.

[25]  V. Khasdan,et al.  Large-Scale Survey of Cytosine Methylation of Retrotransposons and the Impact of Readout Transcription From Long Terminal Repeats on Expression of Adjacent Rice Genes , 2007, Genetics.

[26]  W. Theurkauf,et al.  Biogenesis and germline functions of piRNAs , 2007, Development.

[27]  Asaf Levy,et al.  TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates , 2007, Nucleic Acids Res..

[28]  A. Buzdin,et al.  Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription , 2007, BMC Genomics.

[29]  M. Low,et al.  Ancient Exaptation of a CORE-SINE Retroposon into a Highly Conserved Mammalian Neuronal Enhancer of the Proopiomelanocortin Gene , 2007, PLoS genetics.

[30]  M. Kiefmann,et al.  Can ID Repetitive Elements Serve as Cis-acting Dendritic Targeting Elements? An In Vivo Study , 2007, PLoS ONE.

[31]  T. Tuschl,et al.  Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline , 2007, Nucleic acids research.

[32]  Gratien G. Prefontaine,et al.  Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis , 2007, Science.

[33]  C. Bendixen,et al.  Infertile Finnish Yorkshire boars carry a full-length LINE-1 retrotransposon within the KPL2 gene , 2007, Molecular Genetics and Genomics.

[34]  A. Gentles,et al.  Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. , 2007, Genome research.

[35]  A. Buzdin,et al.  Chimeric retrogenes suggest a role for the nucleolus in LINE amplification , 2007, FEBS letters.

[36]  H. Kazazian,et al.  LINE-1 ORF1 Protein Localizes in Stress Granules with Other RNA-Binding Proteins, Including Components of RNA Interference RNA-Induced Silencing Complex , 2007, Molecular and Cellular Biology.

[37]  G. Schumann APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. , 2007, Biochemical Society transactions.

[38]  N. Okada,et al.  Functional splice sites in a zebrafish LINE and their influence on zebrafish gene expression. , 2007, Gene.

[39]  S. Boissinot,et al.  Selection against Line-1 Retrotransposons Results Principally from Their Ability to Mediate Ectopic Recombination , 2006 .

[40]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[41]  A. Camargo,et al.  Sense-antisense pairs in mammals: functional and evolutionary considerations , 2007, Genome Biology.

[42]  M. Isamat,et al.  Exonization of Alu-generated splice variants in the survivin gene of human and non-human primates. , 2007, Journal of molecular biology.

[43]  H. Ozawa,et al.  The first reported case of Menkes disease caused by an Alu insertion mutation , 2007, Brain and Development.

[44]  E. Ostertag,et al.  Current topics in genome evolution: Molecular mechanisms of new gene formation , 2007, Cellular and Molecular Life Sciences.

[45]  I. King Jordan,et al.  A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements , 2007, PloS one.

[46]  C. A. Dunn,et al.  Repeated Recruitment of LTR Retrotransposons as Promoters by the Anti-Apoptotic Locus NAIP during Mammalian Evolution , 2006, PLoS genetics.

[47]  K. Nishikura,et al.  Editor meets silencer: crosstalk between RNA editing and RNA interference , 2006, Nature Reviews Molecular Cell Biology.

[48]  M. Batzer,et al.  Emergence of primate genes by retrotransposon-mediated sequence transduction , 2006, Proceedings of the National Academy of Sciences.

[49]  Anton Buzdin,et al.  At Least 50% of Human-Specific HERV-K (HML-2) Long Terminal Repeats Serve In Vivo as Active Promoters for Host Nonrepetitive DNA Transcription , 2006, Journal of Virology.

[50]  V. Ruda,et al.  Identification, genome mapping, and CTCF binding of potential insulators within the FXYD5-COX7A1 locus of human Chromosome 19q13.12 , 2006, Mammalian Genome.

[51]  Vetle I. Torvik,et al.  Alu elements within human mRNAs are probable microRNA targets. , 2006, Trends in genetics : TIG.

[52]  N. Eberhardt,et al.  The human growth hormone gene contains a silencer embedded within an Alu repeat in the 3'-flanking region. , 2006, Molecular endocrinology.

[53]  L. N. van de Lagemaat,et al.  Multiple effects govern endogenous retrovirus survival patterns in human gene introns , 2006, Genome Biology.

[54]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[55]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[56]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[57]  Matthew D. Dyer,et al.  Human genomic deletions mediated by recombination between Alu elements. , 2006, American journal of human genetics.

[58]  S. Boissinot,et al.  Fitness cost of LINE-1 (L1) activity in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Speek,et al.  L1 Antisense Promoter Drives Tissue-Specific Transcription of Human Genes , 2006, Journal of biomedicine & biotechnology.

[60]  Valer Gotea,et al.  Do transposable elements really contribute to proteomes? , 2006, Trends in genetics : TIG.

[61]  M. Lyon Do LINEs Have a Role in X-Chromosome Inactivation? , 2006, Journal of biomedicine & biotechnology.

[62]  N. Vinckenbosch,et al.  Evolutionary fate of retroposed gene copies in the human genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. A. Dunn,et al.  Transcription of two human genes from a bidirectional endogenous retrovirus promoter. , 2006, Gene.

[64]  C. A. Dunn,et al.  Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5. , 2005, Gene.

[65]  E. Ostertag,et al.  L1 integration in a transgenic mouse model. , 2005, Genome research.

[66]  Jerilyn A. Walker,et al.  SVA elements: a hominid-specific retroposon family. , 2005, Journal of molecular biology.

[67]  J. Good,et al.  Transposable Element Orientation Bias in the Drosophila melanogaster Genome , 2005, Journal of Molecular Evolution.

[68]  Dixie L. Mager,et al.  Retroviral Repeat Sequences , 2005 .

[69]  H. U. Böhnert,et al.  Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. , 2005, Fungal genetics and biology : FG & B.

[70]  J. V. Moran,et al.  Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells , 2005, Molecular and Cellular Biology.

[71]  Jeffrey S. Han,et al.  Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. , 2005, Genome research.

[72]  Jeffrey S. Han,et al.  LINE‐1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[73]  R. Poulter,et al.  DIRS-1 and the other tyrosine recombinase retrotransposons , 2005, Cytogenetic and Genome Research.

[74]  I. Arkhipova,et al.  Penelope-like elements – a new class of retroelements: distribution, function and possible evolutionary significance , 2005, Cytogenetic and Genome Research.

[75]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[76]  H. Soifer,et al.  A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon , 2005, Nucleic acids research.

[77]  Alexander Rich,et al.  Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome , 2004, PLoS biology.

[78]  N. Bannert,et al.  Retroelements and the human genome: New perspectives on an old relation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Buzdin Retroelements and formation of chimeric retrogenes , 2004, Cellular and Molecular Life Sciences CMLS.

[80]  Jef D. Boeke,et al.  Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes , 2004, Nature.

[81]  R. Poulter,et al.  A new group of tyrosine recombinase-encoding retrotransposons. , 2004, Molecular biology and evolution.

[82]  E. Ostertag,et al.  SVA elements are nonautonomous retrotransposons that cause disease in humans. , 2003, American journal of human genetics.

[83]  N. Maeda,et al.  An intronic endogenous retrovirus-like sequence attenuates human haptoglobin-related gene expression in an orientation-dependent manner. , 2003, Gene.

[84]  Dixie L Mager,et al.  Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. , 2003, Trends in genetics : TIG.

[85]  D. Tuan,et al.  The ERV-9 LTR enhancer is not blocked by the HS5 insulator and synthesizes through the HS5 site non-coding, long RNAs that regulate LTR enhancer function. , 2003, Nucleic acids research.

[86]  Anton Buzdin,et al.  The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. , 2003, Nucleic acids research.

[87]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  W. Lim,et al.  Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT , 2003, Nature Genetics.

[89]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  L. Duret,et al.  Placenta-Specific INSL4 Expression Is Mediated by a Human Endogenous Retrovirus Element1 , 2003, Biology of reproduction.

[91]  J. Landry,et al.  The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. , 2002, Molecular biology and evolution.

[92]  L. N. van de Lagemaat,et al.  Retroelement distributions in the human genome: variations associated with age and proximity to genes. , 2002, Genome research.

[93]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[94]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[95]  C. Ufer,et al.  Discovery of a functional retrotransposon of the murine phospholipid hydroperoxide glutathione peroxidase: chromosomal localization and tissue-specific expression pattern. , 2002, Genomics.

[96]  D. Tuan,et al.  The Solitary Long Terminal Repeats of ERV-9 Endogenous Retrovirus Are Conserved during Primate Evolution and Possess Enhancer Activities in Embryonic and Hematopoietic Cells , 2002, Journal of Virology.

[97]  G. Bernardi,et al.  Similar integration but different stability of Alus and LINEs in the human genome. , 2001, Gene.

[98]  J. Landry,et al.  Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. , 2001, Genomics.

[99]  David C. Hughes Alternative Splicing of the Human VEGFGR-3/FLT4 Gene as a Consequence of an Integrated Human Endogenous Retrovirus , 2001, Journal of Molecular Evolution.

[100]  T. Eickbush,et al.  Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. , 2001, Genome research.

[101]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[102]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[103]  J. Landry,et al.  Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans* , 2001, The Journal of Biological Chemistry.

[104]  W. Makałowski,et al.  Genomic scrap yard: how genomes utilize all that junk. , 2000, Gene.

[105]  P. Vogt,et al.  Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. , 2000, Human molecular genetics.

[106]  R. Hehlmann,et al.  HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts. , 2000, Genomics.

[107]  J. Deragon,et al.  SINE Retroposons Can Be Used In Vivo as Nucleation Centers for De Novo Methylation , 2000, Molecular and Cellular Biology.

[108]  Y. Lebedev,et al.  Solitary HERV‐K LTRs possess bi‐directional promoter activity and contain a negative regulatory element in the U5 region , 2000, FEBS letters.

[109]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[110]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[111]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[112]  E. Sverdlov,et al.  Retroviruses and primate evolution. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[113]  P. Singh,et al.  Identification and characterization of a transcriptional silencer upstream of the human BRCA2 gene. , 1999, Biochemical and biophysical research communications.

[114]  L. Salford,et al.  HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. , 1999, Gene.

[115]  M. Long,et al.  Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. , 1999, Gene.

[116]  J. Brosius,et al.  RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. , 1999, Gene.

[117]  S. Moss,et al.  A conserved nuclear element with a role in mammalian gene regulation. , 1999, Human molecular genetics.

[118]  D. Mager,et al.  Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). , 1999, Genomics.

[119]  P. Kloetzel,et al.  A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. , 1999, Journal of molecular biology.

[120]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[121]  D. Tuan,et al.  A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5' boundary area of the human beta-globin locus control region. , 1998, Genomics.

[122]  J. V. Moran,et al.  The impact of L1 retrotransposons on the human genome , 1998, Nature Genetics.

[123]  B. Burwinkel,et al.  Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. , 1998, Journal of molecular biology.

[124]  R. Lawn,et al.  Apolipoprotein(a) Gene Enhancer Resides within a LINE Element* , 1998, The Journal of Biological Chemistry.

[125]  Stephen B. Baylin,et al.  Mapping Patterns of CpG Island Methylation in Normal and Neoplastic Cells Implicates Both Upstream and Downstream Regions inde Novo Methylation* , 1997, The Journal of Biological Chemistry.

[126]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[127]  A. Furano,et al.  Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus. , 1997, Genetics.

[128]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[130]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[131]  N. Okada,et al.  The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements , 1996, Molecular and cellular biology.

[132]  C. Y. Yu,et al.  Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. , 1994, The Journal of biological chemistry.

[133]  P. Kavathas,et al.  Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene , 1993, Molecular and cellular biology.

[134]  H. Temin,et al.  Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[135]  D. Dorsett Distance-independent inactivation of an enhancer by the suppressor of Hairy-wing DNA-binding protein of Drosophila. , 1993, Genetics.

[136]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[137]  T. Eickbush Transposing without ends: the non-LTR retrotransposable elements. , 1992, The New biologist.

[138]  M. Batzer,et al.  Evolution of the master Alu gene(s) , 1991, Journal of Molecular Evolution.

[139]  H. S. Kim,et al.  Three independent insertions of retrovirus-like sequences in the haptoglobin gene cluster of primates. , 1990, Genomics.

[140]  J. Stavenhagen,et al.  A complex androgen-responsive enhancer resides 2 kilobases upstream of the mouse Slp gene , 1988, Molecular and cellular biology.

[141]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[142]  V. Walbot,et al.  DNA modification of a maize transposable element correlates with loss of activity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[143]  H. Lodish,et al.  Sequence of Dictyostelium DIRS-1: An apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence , 1985, Cell.

[144]  N. Maeda,et al.  Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. The haptoglobin-related gene contains a retrovirus-like element. , 1985, The Journal of biological chemistry.

[145]  A. Cassidy,et al.  Hypomethylation of retrotransposable elements correlates with genomic instability in non‐small cell lung cancer , 2009, International journal of cancer.

[146]  A. Buzdin,et al.  GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats , 2006, Nucleic acids research.

[147]  Richard Cordaux,et al.  Estimating the retrotransposition rate of human Alu elements. , 2006, Gene.

[148]  W. Seifarth,et al.  Evolution and biological significance of human retroelements , 2005, Virus Genes.

[149]  Jürgen Brosius,et al.  Genomes were forged by massive bombardments with retroelements and retrosequences , 2004, Genetica.

[150]  Takashi Sado,et al.  Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chromosome 7. , 2004, DNA research : an international journal for rapid publication of reports on genes and genomes.

[151]  A. Furano,et al.  The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. , 2000, Progress in nucleic acid research and molecular biology.

[152]  A. Ballabio,et al.  LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis. , 1999, American journal of human genetics.

[153]  L. Girard,et al.  Regulatory changes as a consequence of transposon insertion. , 1999, Developmental genetics.

[154]  S. Wessler Transposable elements and the evolution of gene expression. , 1998, Symposia of the Society for Experimental Biology.

[155]  M. Meisler,et al.  The remarkable evolutionary history of the human amylase genes. , 1993, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[156]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[157]  B. Mcclintock,et al.  Controlling elements and the gene. , 1956, Cold Spring Harbor symposia on quantitative biology.