Numerical Simulations of Black Hole Accretion Flows
暂无分享,去创建一个
Agnieszka Janiuk | Kostas Sapountzis | Jeremy Mortier | Ireneusz Janiuk | A. Janiuk | J'er'emy Mortier | I. Janiuk | Konstantinos Sapountzis
[1] A. Tchekhovskoy. Launching of Active Galactic Nuclei Jets , 2015 .
[2] M. Rees. BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .
[3] Jr.,et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.
[4] Neutrino-cooled Accretion Disks around Spinning Black Holes , 2006, astro-ph/0607145.
[5] S. Chakrabarti. The natural angular momentum distribution in the study of thick disks around black holes , 1985 .
[6] M. Mościbrodzka,et al. ACCRETION AND OUTFLOW FROM A MAGNETIZED, NEUTRINO COOLED TORUS AROUND THE GAMMA-RAY BURST CENTRAL ENGINE , 2011, 1111.5470.
[7] Chris L. Fryer,et al. Hyperaccreting Black Holes and Gamma-Ray Bursts , 1998, astro-ph/9807028.
[8] N. Gehrels,et al. Gamma-Ray Bursts , 2016, Stars and Stellar Processes.
[9] B. Paczyński. Gamma-ray bursters at cosmological distances , 1986 .
[10] Hiroshi Akima,et al. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.
[11] D. Adams,et al. Libnucnet: A Tool for Understanding Nucleosynthesis , 2007 .
[12] Accretion Modes in Collapsars: Prospects for Gamma-Ray Burst Production , 2005, astro-ph/0509307.
[13] J. Chiang,et al. GAMMA-RAY LIGHT CURVES AND VARIABILITY OF BRIGHT FERMI-DETECTED BLAZARS , 2010, 1004.0348.
[14] Larry Denneau,et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.
[15] Evolution of a neutrino-cooled disc in gamma-ray bursts , 2004, astro-ph/0406362.
[16] Li-Xin Li,et al. Transient Events from Neutron Star Mergers , 1998 .
[17] Andrew King,et al. Accretion Power in Astrophysics: Third Edition , 2002 .
[18] V. Moncrief,et al. Relativistic fluid disks in orbit around Kerr black holes , 1976 .
[19] Masaomi Tanaka. Kilonova/Macronova Emission from Compact Binary Mergers , 2016, 1605.07235.
[20] R. Perna,et al. Instabilities in the Time-Dependent Neutrino Disk in Gamma-Ray Bursts , 2007, 0704.1325.
[21] W. Popham. Accretion Modes in Collapsars -prospects for Grb Production , 2005 .
[22] A. Janiuk. Microphysics in the Gamma-Ray Burst Central Engine , 2016, 1609.09361.
[23] Sanjay Reddy,et al. Neutrino interactions in hot and dense matter , 1998 .
[24] N. Kylafis,et al. The Formation and Disruption of Black Hole Jets , 2015 .
[25] S. Mineshige,et al. Can Neutrino-cooled Accretion Disks Be an Origin of Gamma-Ray Bursts? , 2002, astro-ph/0203177.
[26] Oleg Korobkin,et al. Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.
[27] P. Padovani,et al. UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.
[28] Philippos Papadopoulos,et al. A "horizon-adapted" approach to the study of relativistic accretion flows onto rotating black holes , 1998 .
[29] Arthur E Champagne,et al. Synthesis of the elements in stars: forty years of progress , 1997 .
[30] A. J. Levan,et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B , 2013, Nature.
[31] Charles F. Gammie,et al. HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .
[32] R. Perna,et al. Neutrino Trapping and Accretion Models for Gamma-Ray Bursts , 2002, astro-ph/0207319.
[33] Technology of China,et al. The role of black hole spin and magnetic field threading the unstable neutrino disk in gamma ray bursts , 2009, 0911.0395.
[34] I. Mirabel,et al. Sources of Relativistic Jets in the Galaxy , 1999, astro-ph/9902062.
[35] Isao Okamoto,et al. Electromagnetic Extraction of Energy from Kerr Black Holes , 2005, astro-ph/0506302.