Temperature and strain-rate dependence of the elevated temperature ductility of Inconel 718 prepared by selective laser melting

[1]  J. Moverare,et al.  High temperature mechanical integrity of selective laser melted alloy 718 evaluated by slow strain rate tests , 2021 .

[2]  Julian R. Lohser,et al.  Elevated Temperature Notch Sensitivity of Inconel 718 Manufactured by Selective Laser Melting , 2021, Journal of Materials Engineering and Performance.

[3]  Sushant K. Manwatkar,et al.  Dynamic Strain Aging and Embrittlement Behavior of IN718 During High-Temperature Deformation , 2020, Metallurgical and Materials Transactions A.

[4]  D. Witkin,et al.  Process gas influence on microstructure and mechanical behavior of Inconel 718 fabricated via selective laser melting , 2020 .

[5]  Tait D. McLouth,et al.  Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control , 2020 .

[6]  V. Popovich,et al.  A review of mechanical properties of additively manufactured Inconel 718 , 2019 .

[7]  R. Poprawe,et al.  Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process , 2019, Materials Science and Engineering: A.

[8]  Tait D. McLouth,et al.  Anomalous Notch Rupture Behavior of Nickel-Based Superalloy Inconel 718 Due to Fabrication by Additive Manufacturing , 2019, Metallurgical and Materials Transactions A.

[9]  Tait D. McLouth,et al.  Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting , 2018 .

[10]  L. H. Almeida,et al.  Oxidation assisted intergranular cracking in 718 Nickel Superalloy: on the mechanism of dynamic embrittlement , 2018 .

[11]  Tait D. McLouth,et al.  The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting , 2018, Materials & Design.

[12]  Johan Moverare,et al.  Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments , 2017 .

[13]  D. Masaylo,et al.  Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting , 2017 .

[14]  F. Caiazzo,et al.  Laser powder-bed fusion of Inconel 718 to manufacture turbine blades , 2017 .

[15]  E. V. Borisov,et al.  Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties , 2017 .

[16]  U. Glatzel,et al.  Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting , 2016 .

[17]  A. Mitchell Primary Carbides in Alloy 718 , 2012 .

[18]  V. Vignal,et al.  Diffusion of oxygen in nickel: A variable charge molecular dynamics study , 2010 .

[19]  R. Wei,et al.  Oxygen enhanced crack growth in nickel-based superalloys and materials damage prognosis , 2009 .

[20]  R. Hayes Oxygen Embrittlement and Time-Dependent Grain-Boundary Cracking of ALLVAC 718PLUS , 2008 .

[21]  A. Pineau,et al.  Gamma double prime precipitation kinetic in Alloy 718 , 2008 .

[22]  D. Woodford Gas phase embrittlement and time dependent cracking of nickel based superalloys , 2006 .

[23]  Liu Wei,et al.  Delta phase precipitation in Inconel 718 , 2004 .

[24]  D. Delafosse,et al.  Oxidation induced intergranular cracking and Portevin–Le Chatelier effect in nickel base superalloy 718 , 2001 .

[25]  C. Mcmahon,et al.  Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement , 2001 .

[26]  Ming Gao,et al.  Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys , 1995 .

[27]  D. Dwyer,et al.  Surface enrichment and grain boundary segregation of niobium in inconel 718 single- and poly-crystals , 1994 .

[28]  Ming Gao,et al.  Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor , 1994 .

[29]  D. Bika,et al.  A kinetic model for dynamic embrittlement , 1992 .

[30]  H. Ghonem,et al.  Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718 , 1992 .

[31]  G. Eggeler,et al.  The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses , 1989 .

[32]  M. Chaturvedi,et al.  Strengthening mechanisms in Inconel 718 superalloy , 1983 .

[33]  M. Booker,et al.  Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718 , 1980 .

[34]  K. Sadananda,et al.  Creep crack growth in alloy 718 , 1977 .

[35]  M. Donachie,et al.  The effects of solution and intermediate heat treatments on the notch-rupture behavior of Inconel 718 , 1975 .

[36]  S. Floreen The creep fracture of wrought nickel-base alloys by a fracture mechanics approach , 1975 .

[37]  D. S. Duvall,et al.  Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates , 1974, Metallurgical and Materials Transactions B.

[38]  J. Nellesen,et al.  Hot isostatic pressing of IN718 components manufactured by selective laser melting , 2017 .

[39]  U. Krupp,et al.  On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C , 2016 .

[40]  R. Wei,et al.  Mechanistic Considerations of Oxygen Enhanced Crack Growth in INCONEL 718 , 2001 .

[41]  Robert P. Wei,et al.  High temperature oxidation of Nb, NbC and Ni3Nb and oxygen enhanced crack growth , 2000 .

[42]  W. Yong,et al.  Delta Phase and Deformation Fracture Behaviour of Inconel 718 Alloy , 1997 .

[43]  R. P. Wei,et al.  Chemical and Microstructural Aspects of Creep Crack Growth in Inconel 718 Alloy , 1994 .

[44]  C. Schvezov,et al.  The Precipitation of Primary Carbides in Alloy 718 , 1994 .

[45]  J. Radavich,et al.  A Current T-T-T Diagram for Wrought Alloy 718 , 1991 .

[46]  N. Ingesten,et al.  Grain Boundary δ-Phase Morphologies, Carbides and Notch Rupture Sensitivity of Cast Alloy 718 , 1991 .