On the Interplay between Distortion, Mean Value and Haezendonck-Goovaerts Risk Measures

In the actuarial research, distortion, mean value and Haezendonck–Goovaerts risk measures are concepts that are usually treated separately. In this paper we indicate and characterize the relation between these different risk measures, as well as their relation to convex risk measures. While it is known that the mean value principle can be used to generate premium calculation principles, we will show how they also allow to generate solvency calculation principles. Moreover, we explain the role provided for the distortion risk measures as an extension of the Tail Value-at-Risk (TVaR) and Conditional Tail Expectation (CTE).

[1]  Qihe Tang,et al.  A Comonotonic Image of Independence for Additive Risk Measures , 2004 .

[2]  Applications of conditional comonotonicity to some optimization problems , 2009 .

[3]  Volker Krätschmer,et al.  Sensitivity of risk measures with respect to the normal approximation of total claim distributions , 2011 .

[4]  Marc Goovaerts,et al.  Insurance premiums: Theory and applications , 1984 .

[5]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Applications , 2002 .

[6]  Qihe Tang,et al.  Asymptotics for Risk Capital Allocations Based on Conditional Tail Expectation , 2011 .

[7]  H. Gerber,et al.  On the representation of additive principles of premium calculation , 1981 .

[8]  Emanuela Rosazza Gianin,et al.  On Haezendonck risk measures , 2008 .

[9]  Jan Dhaene,et al.  A Unified Approach to Generate Risk Measures , 2003, ASTIN Bulletin.

[10]  M. Goovaerts,et al.  Decision principles derived from risk measures , 2010 .

[11]  M. Goovaerts,et al.  A new premium calculation principle based on Orlicz norms , 1982 .

[12]  M. J. Goovaerts,et al.  On the characterization of Wang's class of premium principles , 1998 .

[13]  Jan Dhaene,et al.  The Concept of Comonotonicity in Actuarial Science and Finance: Theory , 2002, Insurance: Mathematics and Economics.

[14]  Qihe Tang,et al.  Some New Classes of Consistent Risk Measures , 2004 .

[15]  Emanuela Rosazza Gianin,et al.  Haezendonck-Goovaerts risk measures and Orlicz quantiles , 2012 .

[16]  Worst VaR scenarios: a remark , 2009 .

[17]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[18]  J.L.M. Dhaene,et al.  On the characterization of Wangs' class of premium principles. Transactions of the 26th International Congres of Actuaries, Birmingham, June 7-12, 1998 , 1999 .

[19]  Jan Dhaene,et al.  Modern Actuarial Risk Theory: Using R , 2008 .

[20]  M. Kaluszka,et al.  On iterative premium calculation principles under Cumulative Prospect Theory , 2013 .

[21]  Carmine De Franco,et al.  Portfolio insurance under a risk-measure constraint , 2011, 1102.4489.

[22]  Yongsheng Song,et al.  Risk Measures with Comonotonic Subadditivity or Convexity and Respecting Stochastic Orders , 2022 .

[23]  M. Goovaerts,et al.  A note on additive risk measures in rank-dependent utility , 2010 .

[24]  Roger J. A. Laeven,et al.  Worst case risk measurement: back to the future? , 2011 .

[25]  Corso di Laurea,et al.  UNIVERSIT A DEGLI STUDI DI MILANO-BICOCCA , 2013 .

[26]  Characterization of upper comonotonicity via tail convex order , 2011 .

[27]  Q. Tang,et al.  On the Haezendonck–Goovaerts risk measure for extreme risks , 2012 .

[28]  Mary,et al.  Ordering of Risk Measures for Capital Adequacy-Proceedings AFIR 2000-Tromsø, Norway , 2002 .

[29]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[30]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[31]  M. Goovaerts,et al.  Actuarial Risk Measures for Financial Derivative Pricing , 2006 .

[32]  R. Zitikis,et al.  Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses , 2011 .