Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity

Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n-qubit Toffoli gate. These resources consist of the nontrivial Clifford gate (CNOT), non-Clifford gate (T gate), ancillary qubits, and circuit depth. To implement n-qubit Toffoli gates, we consider two cases: only one auxiliary qubit and unlimited auxiliary qubits. The key of the first case is to decompose an n-qubit Toffoli gate into the reduced Toffoli gate modulo phase shift using the Clifford gates and one ancillary qubit. With this construction, it only requires O(n) number of general resources for an n-qubit Toffoli gate. For the second case, an approximate Toffoli gate is constructed to obtain efficient decomposition of a Toffoli gate. The new decomposition can further reduce general resources except auxiliary qubits.

[1]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Dmitri Maslov,et al.  On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization , 2015, ArXiv.

[4]  Timothy C. Ralph,et al.  Efficient Toffoli gates using qudits , 2007 .

[5]  Dieter Suter,et al.  An Efficient Exact Quantum Algorithm for the Integer Square-free Decomposition Problem , 2012, Scientific Reports.

[6]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[7]  Massoud Pedram,et al.  Linear-Depth Quantum Circuits for n-qubit Toffoli gates with no Ancilla , 2013, ArXiv.

[8]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[9]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[10]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[11]  Matthias Schroder,et al.  Analysis 2nd Edition , 2016 .

[12]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[15]  M. Ying,et al.  Five two-qubit gates are necessary for implementing the Toffoli gate , 2013, 1301.3372.

[16]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[18]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[19]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[20]  R. Feynman Simulating physics with computers , 1999 .

[21]  Mauro Paternostro,et al.  Simple trapped-ion architecture for high-fidelity Toffoli gates , 2011 .

[22]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[24]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[25]  A. Wallraff,et al.  Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.

[26]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[27]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Morteza Saheb Zamani,et al.  Block-based quantum-logic synthesis , 2010, Quantum Inf. Comput..

[30]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[31]  Jun Zhang,et al.  Exact two-qubit universal quantum circuit. , 2003, Physical review letters.

[32]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[33]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[34]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[35]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[36]  J. Vartiainen,et al.  Efficient decomposition of quantum gates. , 2003, Physical review letters.

[37]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.