On a discrete analogue of the two-dimensional Toda lattice hierarchy
暂无分享,去创建一个
[1] Y. Suris. Bi-Hamiltonian structure of the qd algorithm and new discretizations of the Toda lattice , 1995 .
[2] Alfred Ramani,et al. Orthogonal polynomial approach to discrete Lax pairs for initial boundary-value problems of the QD algorithm , 1995 .
[3] Satoshi Tsujimoto,et al. Difference Scheme of Soliton Equations , 1993 .
[4] Y. Suris. Discrete time generalized Toda lattices: Complete integrability and relation with relativistic Toda lattices , 1990 .
[5] Mikio Sato. The KP Hierarchy and Infinite-Dimensional Grassmann Manifolds , 1988 .
[6] Y. Ohta,et al. An Elementary Introduction to Sato Theory , 1988 .
[7] K. Takasaki,et al. Toda lattice hierarchy , 1984 .
[8] Michio Jimbo,et al. Method for Generating Discrete Soliton Equations. I , 1983 .
[9] Mikio Sato. Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .
[10] Masaki Kashiwara,et al. Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .
[11] T. Miwa. On Hirota's difference equations , 1982 .
[12] M. Jimbo,et al. TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .
[13] R. Hirota. Discrete Analogue of a Generalized Toda Equation , 1981 .
[14] Ryogo Hirota,et al. Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .