Fundamental Differences Between Conventional and Geared Turbofans

The potential for improving the thermodynamic efficiency of aircraft engines is limited because the aerodynamic quality of the turbomachines has already achieved a very high level. While in the past increasing burner exit temperature did contribute to better cycle efficiency, this is no longer the case with today’s temperatures in the range of 1900...2000K. Increasing the cycle pressure ratio above 40 will yield only a small fuel consumption benefit. Therefore the only way to improve the fuel efficiency of aircraft engines significantly is to increase bypass ratio — which yields higher propulsive efficiency. A purely thermodynamic cycle study shows that specific fuel consumption decreases continuously with increasing bypass ratio. However, thermodynamics alone is a too simplistic view of the problem. A conventional direct drive turbofan of bypass ratio 6 looks very different to an engine with bypass ratio 10. Increasing bypass ratio above 10 makes it attractive to design an engine with a gearbox to separate the fan speed from the other low pressure components. Different rules apply for optimizing turbofans of conventional designs and those with a gearbox. This paper describes various criteria to be considered for optimizing the respective engines and their components. For illustrating the main differences between conventional and geared turbofans it is assumed that an existing core of medium pressure ratio with a two stage high pressure turbine is to be used. The design of the engines is done for takeoff rating because this is the mechanically most challenging condition. For each engine the flow annulus is examined and stress calculations for the disks are performed. The result of the integrated aero-thermodynamic and mechanical study allows a comparison of the fundamental differences between conventional and geared turbofans. At the same bypass ratio there will be no significant difference in specific fuel consumption between the alternative designs. The main difference is in the parts count which is much lower for the geared turbofan than for the conventional engine. However, these parts will be mechanically much more challenging than those of a conventional turbofan. If the bypass ratio is increased significantly above 10, then the geared turbofan becomes more and more attractive and the conventional turbofan design is no longer a real option. The maximum practical bypass ratio for ducted fans depends on the nacelle drag and how the installation problems can be solved.Copyright © 2009 by ASME