Generative adversarial networks

Generative adversarial networks are a kind of artificial intelligence algorithm designed to solve the generative modeling problem. The goal of a generative model is to study a collection of training examples and learn the probability distribution that generated them. Generative Adversarial Networks (GANs) are then able to generate more examples from the estimated probability distribution. Generative models based on deep learning are common, but GANs are among the most successful generative models (especially in terms of their ability to generate realistic high-resolution images). GANs have been successfully applied to a wide variety of tasks (mostly in research settings) but continue to present unique challenges and research opportunities because they are based on game theory while most other approaches to generative modeling are based on optimization.

[1]  S. Lacoste-Julien,et al.  Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints , 2022, NeurIPS.

[2]  S. Lacoste-Julien,et al.  Dynamics of SGD with Stochastic Polyak Stepsizes: Truly Adaptive Variants and Convergence to Exact Solution , 2022, NeurIPS.

[3]  Marwa El Halabi,et al.  Data-Efficient Structured Pruning via Submodular Optimization , 2022, NeurIPS.

[4]  Chris C. Emezue,et al.  Bayesian Structure Learning with Generative Flow Networks , 2022, UAI.

[5]  Cees G. M. Snoek,et al.  Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation , 2021, ICLR.

[6]  Rémi Le Priol,et al.  Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA , 2021, CLeaR.

[7]  Ioannis Mitliagkas,et al.  Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity , 2021, NeurIPS.

[8]  Simon Lacoste-Julien,et al.  Structured Convolutional Kernel Networks for Airline Crew Scheduling , 2021, ICML.

[9]  Hwidong Na,et al.  Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning , 2021, ICLR.

[10]  William L. Hamilton,et al.  Online Adversarial Attacks , 2021, ICLR.

[11]  Damien Scieur,et al.  Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets , 2020, ICML.

[12]  R Devon Hjelm,et al.  Implicit Regularization via Neural Feature Alignment , 2020, AISTATS.

[13]  Ioannis Mitliagkas,et al.  Stochastic Hamiltonian Gradient Methods for Smooth Games , 2020, ICML.

[14]  Alexandre Lacoste,et al.  Differentiable Causal Discovery from Interventional Data , 2020, NeurIPS.

[15]  William L. Hamilton,et al.  Adversarial Example Games , 2020, NeurIPS.

[16]  Yoshua Bengio,et al.  An Analysis of the Adaptation Speed of Causal Models , 2020, AISTATS.

[17]  Sharan Vaswani,et al.  Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence , 2020, AISTATS.

[18]  François Soumis,et al.  Machine Learning in Airline Crew Pairing to Construct Initial Clusters for Dynamic Constraint Aggregation , 2020, EURO J. Transp. Logist..

[19]  Ioannis Mitliagkas,et al.  Accelerating Smooth Games by Manipulating Spectral Shapes , 2020, AISTATS.

[20]  Mark W. Schmidt,et al.  Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation , 2019, AISTATS.

[21]  S. Lacoste-Julien,et al.  GAIT: A Geometric Approach to Information Theory , 2019, AISTATS.

[22]  Ioannis Mitliagkas,et al.  A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games , 2019, ArXiv.

[23]  Pascal Vincent,et al.  A Closer Look at the Optimization Landscapes of Generative Adversarial Networks , 2019, ICLR.

[24]  Tristan Deleu,et al.  Gradient-Based Neural DAG Learning , 2019, ICLR.

[25]  Mark W. Schmidt,et al.  Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates , 2019, NeurIPS.

[26]  Francis Bach,et al.  Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural Networks , 2019, NeurIPS.

[27]  Tatjana Chavdarova,et al.  Reducing Noise in GAN Training with Variance Reduced Extragradient , 2019, NeurIPS.

[28]  Tero Karras,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Anton Osokin,et al.  Quantifying Learning Guarantees for Convex but Inconsistent Surrogates , 2018, NeurIPS.

[30]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[31]  Nikos Komodakis,et al.  Scattering Networks for Hybrid Representation Learning , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Yoshua Bengio,et al.  Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information , 2018, INFORMS J. Comput..

[33]  Ioannis Mitliagkas,et al.  Negative Momentum for Improved Game Dynamics , 2018, AISTATS.

[34]  Gauthier Gidel,et al.  Frank-Wolfe Splitting via Augmented Lagrangian Method , 2018, AISTATS.

[35]  Hyrum S. Anderson,et al.  The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation , 2018, ArXiv.

[36]  Andrew M. Dai,et al.  MaskGAN: Better Text Generation via Filling in the ______ , 2018, ICLR.

[37]  Fabian Pedregosa,et al.  Improved asynchronous parallel optimization analysis for stochastic incremental methods , 2018, J. Mach. Learn. Res..

[38]  Alexandre Piché,et al.  Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields , 2017, UAI.

[39]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Heiga Zen,et al.  Parallel WaveNet: Fast High-Fidelity Speech Synthesis , 2017, ICML.

[41]  Mario Lucic,et al.  Are GANs Created Equal? A Large-Scale Study , 2017, NeurIPS.

[42]  Jung-Woo Ha,et al.  StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  淳 佐久間,et al.  Generative Adversarial Networksを用いた確率的識別モデルから訓練データ生成分布の推定 , 2017 .

[44]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[45]  Andrew M. Dai,et al.  Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step , 2017, ICLR.

[46]  S. Hochreiter,et al.  Coulomb GANs: Provably Optimal Nash Equilibria via Potential Fields , 2017, ICLR.

[47]  Fabian Pedregosa,et al.  Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization , 2017, NIPS.

[48]  Zhiwei Steven Wu,et al.  Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing , 2017, bioRxiv.

[49]  Yoshua Bengio,et al.  A Closer Look at Memorization in Deep Networks , 2017, ICML.

[50]  Anton Osokin,et al.  SEARNN: Training RNNs with Global-Local Losses , 2017, ICLR.

[51]  J. Zico Kolter,et al.  Gradient descent GAN optimization is locally stable , 2017, NIPS.

[52]  Sebastian Nowozin,et al.  The Numerics of GANs , 2017, NIPS.

[53]  Peter Dayan,et al.  Comparison of Maximum Likelihood and GAN-based training of Real NVPs , 2017, ArXiv.

[54]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[55]  Francis R. Bach,et al.  On Structured Prediction Theory with Calibrated Convex Surrogate Losses , 2017, NIPS.

[56]  Yingyu Liang,et al.  Generalization and Equilibrium in Generative Adversarial Nets (GANs) , 2017, ICML.

[57]  Jan Kautz,et al.  Unsupervised Image-to-Image Translation Networks , 2017, NIPS.

[58]  Ivan Laptev,et al.  Joint Discovery of Object States and Manipulation Actions , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[59]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[60]  Luke de Oliveira,et al.  Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis , 2017, Computing and Software for Big Science.

[61]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[62]  Tomas Pfister,et al.  Learning from Simulated and Unsupervised Images through Adversarial Training , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  David Pfau,et al.  Unrolled Generative Adversarial Networks , 2016, ICLR.

[64]  Ruslan Salakhutdinov,et al.  On the Quantitative Analysis of Decoder-Based Generative Models , 2016, ICLR.

[65]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[66]  Tony Jebara,et al.  Frank-Wolfe Algorithms for Saddle Point Problems , 2016, AISTATS.

[67]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Minh N. Do,et al.  Semantic Image Inpainting with Perceptual and Contextual Losses , 2016, ArXiv.

[70]  Ming-Yu Liu,et al.  Coupled Generative Adversarial Networks , 2016, NIPS.

[71]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[72]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[73]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[74]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[75]  Anton Osokin,et al.  Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs , 2016, ICML.

[76]  Alexandre Lacoste,et al.  PAC-Bayesian Theory Meets Bayesian Inference , 2016, NIPS.

[77]  Francis R. Bach,et al.  Beyond CCA: Moment Matching for Multi-View Models , 2016, ICML.

[78]  Hui Jiang,et al.  Generating images with recurrent adversarial networks , 2016, ArXiv.

[79]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[80]  Jost Tobias Springenberg,et al.  Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks , 2015, ICLR.

[81]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[82]  Martin Jaggi,et al.  On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.

[83]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[84]  Rahul G. Krishnan,et al.  Barrier Frank-Wolfe for Marginal Inference , 2015, NIPS.

[85]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[86]  Francis R. Bach,et al.  Rethinking LDA: Moment Matching for Discrete ICA , 2015, NIPS.

[87]  Josef Sivic,et al.  Learning from Narrated Instruction Videos , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  Ivan Laptev,et al.  Unsupervised Learning from Narrated Instruction Videos , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[89]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[90]  Aurélien Lucchi,et al.  Variance Reduced Stochastic Gradient Descent with Neighbors , 2015, NIPS.

[91]  R. Zemel,et al.  Generative Moment Matching Networks , 2015, ICML.

[92]  Fredrik Lindsten,et al.  Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering , 2015, AISTATS.

[93]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[94]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[95]  Ivan Laptev,et al.  On pairwise costs for network flow multi-object tracking , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Francis Bach,et al.  SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.

[97]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[98]  Diederik P. Kingma,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[99]  Yoshua Bengio,et al.  Multi-Prediction Deep Boltzmann Machines , 2013, NIPS.

[100]  S. Shankar Sastry,et al.  Characterization and computation of local Nash equilibria in continuous games , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[101]  Ian J. Goodfellow,et al.  Pylearn2: a machine learning research library , 2013, ArXiv.

[102]  Yoshua Bengio,et al.  Deep Generative Stochastic Networks Trainable by Backprop , 2013, ICML.

[103]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[104]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[105]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition , 2012 .

[106]  Mark W. Schmidt,et al.  Block-Coordinate Frank-Wolfe Optimization for Structural SVMs , 2012, ICML.

[107]  Gjergji Kasneci,et al.  SIGMa: simple greedy matching for aligning large knowledge bases , 2012, KDD.

[108]  Yoshua Bengio,et al.  Better Mixing via Deep Representations , 2012, ICML.

[109]  Geoffrey E. Hinton,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[110]  Yoshua Bengio,et al.  A Generative Process for sampling Contractive Auto-Encoders , 2012, ICML 2012.

[111]  G. Obozinski,et al.  On the Equivalence between Herding and Conditional Gradient Algorithms , 2012, ICML.

[112]  Pascal Vincent,et al.  Quickly Generating Representative Samples from an RBM-Derived Process , 2011, Neural Computation.

[113]  Zoubin Ghahramani,et al.  Approximate inference for the loss-calibrated Bayesian , 2011, AISTATS.

[114]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[115]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[116]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[117]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[118]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[119]  Michael I. Jordan,et al.  DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification , 2008, NIPS.

[120]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[121]  Tijmen Tieleman,et al.  Training restricted Boltzmann machines using approximations to the likelihood gradient , 2008, ICML '08.

[122]  Ben Taskar,et al.  Structured Prediction, Dual Extragradient and Bregman Projections , 2006, J. Mach. Learn. Res..

[123]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[124]  Ben Taskar,et al.  Word Alignment via Quadratic Assignment , 2006, NAACL.

[125]  Ben Taskar,et al.  Structured Prediction via the Extragradient Method , 2005, NIPS.

[126]  Ben Taskar,et al.  A Discriminative Matching Approach to Word Alignment , 2005, HLT.

[127]  H. Vangheluwe,et al.  Meta-modelling hybrid formalisms , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[128]  L. Younes On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates , 1999 .

[129]  Brendan J. Frey,et al.  Graphical Models for Machine Learning and Digital Communication , 1998 .

[130]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[131]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[132]  S. Lacoste-Julien,et al.  Synergies Between Disentanglement and Sparsity: a Multi-Task Learning Perspective , 2022, ArXiv.

[133]  Jinsung Yoon,et al.  GENERATIVE ADVERSARIAL NETS , 2018 .

[134]  Pascal Vincent,et al.  A Variational Inequality Perspective on Generative Adversarial Nets , 2018, ArXiv.

[135]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[136]  Jia Deng,et al.  A large-scale hierarchical image database , 2009, CVPR 2009.

[137]  Yoshua Bengio Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[138]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.