Integrating global land cover datasets for deriving user-specific maps

ABSTRACT Global scale land cover (LC) mapping has interested many researchers over the last two decades as it is an input data source for various applications. Current global land cover (GLC) maps often do not meet the accuracy and thematic requirements of specific users. This study aimed to create an improved GLC map by integrating available GLC maps and reference datasets. We also address the thematic requirements of multiple users by demonstrating a concept of producing GLC maps with user-specific legends. We used a regression kriging method to integrate Globcover-2009, LC-CCI-2010, MODIS-2010 and Globeland30 maps and several publicly available GLC reference datasets. Overall correspondence of the integrated GLC map with reference LC was 80% based on 10-fold cross-validation using 24,681 sample sites. This is globally 10% and regionally 6–13% higher than the input map correspondences. Based on LC class presence probability maps, expected LC proportion maps at coarser resolution were created and used for characterizing mosaic classes for land system modelling and biodiversity assessments. Since more reference datasets are becoming freely accessible, GLC mapping can be further improved by using the pool of all available reference datasets. LC proportion information allow tuning LC products to specific user needs.

[1]  S. de Bruin,et al.  Assessing global land cover reference datasets for different user communities , 2015 .

[2]  Jacinto Estima,et al.  Exploratory analysis of OpenStreetMap for land use classification , 2013, GEOCROWD '13.

[3]  Sytze de Bruin,et al.  Querying probabilistic land cover data using fuzzy set theory , 2000, Int. J. Geogr. Inf. Sci..

[4]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[5]  E. Lambin,et al.  The emergence of land change science for global environmental change and sustainability , 2007, Proceedings of the National Academy of Sciences.

[6]  Lucy Bastin,et al.  Usability of VGI for validation of land cover maps , 2015, Int. J. Geogr. Inf. Sci..

[7]  Ryutaro Tateishi,et al.  Production of global land cover data – GLCNMO , 2011, Int. J. Digit. Earth.

[8]  Martin Herold,et al.  Utilizing the Global Land Cover 2000 reference dataset for a comparative accuracy assessment of 1 km global land cover maps , 2015 .

[9]  Steffen Fritz,et al.  Spatial Accuracy Assessment and Integration of Global Land Cover Datasets , 2015, Remote. Sens..

[10]  Ben Collen,et al.  Global effects of land use on local terrestrial biodiversity , 2015, Nature.

[11]  R. Betts,et al.  Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative , 2015 .

[12]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[13]  Kathleen Neumann,et al.  Challenges in using land use and land cover data for global change studies , 2011 .

[14]  P. Verburg,et al.  A Land System representation for global assessments and land‐use modeling , 2012, Global change biology.

[15]  Rick Mueller,et al.  Mapping global cropland and field size , 2015, Global change biology.

[16]  Steffen Fritz,et al.  Building a hybrid land cover map with crowdsourcing and geographically weighted regression , 2015 .

[17]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[18]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[19]  Martin Herold,et al.  Some challenges in global land cover mapping : An assessment of agreement and accuracy in existing 1 km datasets , 2008 .

[20]  Steffen Fritz,et al.  Geo-Wiki: An online platform for improving global land cover , 2012, Environ. Model. Softw..

[21]  M. Herold,et al.  Revisiting land cover observation to address the needs of the climate modeling community , 2011 .

[22]  Nandin-Erdene Tsendbazar,et al.  Global land cover mapping: current status and future trends , 2014 .

[23]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[24]  Steffen Fritz,et al.  Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics , 2015 .

[25]  S. Bruin Predicting the areal extent of land-cover types using classified imagery and geostatistics. , 2000 .

[26]  Martin Jung,et al.  Exploiting synergies of global land cover products for carbon cycle modeling , 2006 .

[27]  A. Belward,et al.  GLC 2000 : a new approach to global land cover mapping from Earth observation data , 2005 .

[28]  Bryan C. Pijanowski,et al.  Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world , 2014, Environ. Model. Softw..

[29]  B. Turner,et al.  Land change science special feature: The emergence of land change science for global environmental change and sustainability (Proceedings of the National Academy of Sciences of the United States of America (2007) 104, 52, (20666-20671) DOI: 10.1073/pnas.0704119104) , 2008 .

[30]  Steffen Fritz,et al.  Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data , 2016, ISPRS Int. J. Geo Inf..

[31]  Eric Vaz,et al.  GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries , 2016 .

[32]  Steffen Fritz,et al.  Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover , 2009, Remote. Sens..

[33]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[34]  Nandin-Erdene Tsendbazar,et al.  Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[35]  A. Arnfield Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island , 2003 .

[36]  Steffen Fritz,et al.  Highlighting continued uncertainty in global land cover maps for the user community , 2011 .

[37]  Gerard B. M. Heuvelink,et al.  Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach , 2009 .

[38]  Kees Klein Goldewijk,et al.  Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1 , 2010 .

[39]  Yoshiki Yamagata,et al.  Creation of a global land cover and a probability map through a new map integration method , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[40]  Alan H. Strahler,et al.  Validation of the global land cover 2000 map , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[42]  Bicheron Patrice,et al.  GlobCover - Products Description and Validation Report , 2008 .

[43]  Damien Sulla-Menashe,et al.  A global land-cover validation data set, part I: fundamental design principles , 2012 .

[44]  R. Maloney,et al.  Financial Costs of Meeting Global Biodiversity Conservation Targets: Current Spending and Unmet Needs , 2012, Science.

[45]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[46]  Tadanobu Nakayama,et al.  Simulation of complicated and diverse water system accompanied by human intervention in the North China Plain , 2011 .

[47]  Kenlo Nishida Nasahara,et al.  Creation of New Global Land Cover Map with Map Integration , 2011, J. Geogr. Inf. Syst..

[48]  Carsten Brockmann,et al.  Globcover - A Global Land Cover Service with MERIS , 2007 .

[49]  A. Belward,et al.  GLC2000: a new approach to global land cover mapping from Earth observation data , 2005 .

[50]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[51]  Jamal Jokar Arsanjani,et al.  Assessing the suitability of GlobeLand30 for mapping land cover in Germany , 2016, Int. J. Digit. Earth.

[52]  M. H. Costa,et al.  Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia , 2003 .

[53]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[54]  Laurence C. Smith,et al.  How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground‐truth database for West Siberia , 2007 .

[55]  Peter H. Verburg,et al.  A land-use systems approach to represent land-use dynamics at continental and global scales , 2012, Environ. Model. Softw..

[56]  Tosiyuki Nakaegawa,et al.  Uncertainty in land cover datasets for global land‐surface models derived from 1‐km global land cover datasets , 2011 .