Application of cascaded frequency multiplication to molecular spectroscopy

Laboratory molecular spectroscopy provides the basis for interpretation of atmospheric, planetary, and astrophysical data gathered by remote sensing. Laboratory studies of atomic and molecular signatures across the electromagnetic spectrum provide high-precision, quantitative data used to interpret the observed environment from remote measurements. Historically, the region of the spectrum above 500 GHz has been relatively unexplored due to atmospheric absorption and technical difficulties generating and detecting radiation. Laboratory spectroscopy at these frequencies has traditionally involved measurement of one or two absorption features and relied on fitting of models to the limited data. We report a new spectrometer built around a computer-controlled commercial synthesizer and millimeter-wave module driving a series of amplifiers followed by a series of wide-bandwidth frequency doublers and triplers. The spectrometer provides the ability to rapidly measure large pieces of frequency space with higher resolution, accuracy, and sensitivity than with Fourier transform infrared techniques. The approach is simple, modular, and requires no custom-built electronics or high voltage and facilitates the use of infrared data analysis techniques on complex submillimeter spectra.

[1]  Peter A. R. Ade,et al.  SAFIRE-A: Spectroscopy of the Atmosphere Using Far-Infrared Emission/Airborne , 1999 .

[2]  Walter Gordy,et al.  One-to-Two Millimeter Wave Spectroscopy. IV. Experimental Methods and Results for OCS, CH3F, andH2O , 1954 .

[3]  Ozeki,et al.  High-Resolution Terahertz Spectroscopy by a Compact Radiation Source Based on Photomixing with Diode Lasers in a Photoconductive Antenna , 1998, Journal of molecular spectroscopy.

[4]  John C. Pearson,et al.  A tunable cavity-locked diode laser source for terahertz photomixing , 2000 .

[5]  Itziar Aretxaga,et al.  The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  J. Mangum MAIN BEAM EFFICIENCY MEASUREMENTS OF THE CALTECH SUBMILLIMETER OBSERVATORY , 1993 .

[8]  A. F. Krupnov Phase Lock-In of MM/SUBMM Backward Wave Oscillators: Development, Evolution, and Applications , 2001 .

[9]  R. C. Cohen,et al.  Tunable Far-Infrared Laser Spectroscopy of Hydrogen Bonds , 1988, High Resolution Spectroscopy.

[10]  Birk,et al.  The Far Infrared Spectrum of HOCl: Line Positions and Intensities. , 1998, Journal of molecular spectroscopy.

[11]  Gerard Beaudin,et al.  Heterodyne instrument for FIRST (HIFI): preliminary design , 1998, Astronomical Telescopes and Instrumentation.

[12]  Igor Pak,et al.  Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range , 1998 .

[13]  Lorene Samoska,et al.  Power-amplifier modules covering 70-113 GHz using MMICs , 2001 .

[14]  John F. Alder,et al.  The future for quantitative millimetre wavelength spectrometry , 2002 .

[15]  Peter H. Siegel,et al.  Terahertz local oscillator sources: performance and capabilities , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Peter Zimmermann Multipliers for terahertz local oscillators , 1998, Astronomical Telescopes and Instrumentation.

[18]  Richard R. Lay,et al.  The UARS and EOS Microwave Limb Sounder (MLS) Experiments. , 1999 .

[19]  M. Anderson,et al.  A millimeter/submillimeter spectrometer for !high resolution studies of transient molecules , 1994 .

[20]  M. A. Frerking,et al.  Generation of tunable laser sidebands in the far‐infrared region , 1985 .

[21]  I. Mehdi,et al.  An all-solid-state broad-band frequency multiplier chain at 1500 GHz , 2004, IEEE Transactions on Microwave Theory and Techniques.

[22]  Neal R. Erickson Diode frequency multipliers for terahertz local-oscillator applications , 1998, Astronomical Telescopes and Instrumentation.

[23]  Frank C. De Lucia,et al.  Continuously tunable coherent spectroscopy for the 0.1–1.0‐THz region , 1983 .

[24]  Didier Dangoisse,et al.  Heterodyne detection of tunable FIR sidebands , 1987 .

[25]  K. Evenson,et al.  Tunable far-infrared spectroscopy , 1984 .

[26]  W. Meerts,et al.  High-resolution tunable spectroscopy of rotational transitions of NO near 30 cm−1 , 1980 .

[27]  William R. Irace,et al.  SIRTF - the Space Infrared Telescope Facility , 2004 .

[28]  You‐Kuan Zhang,et al.  Numerical simulations of transport of non-ergodic solute plumes in heterogeneous aquifers , 1998 .

[29]  Peter H. Siegel,et al.  A 2.5-THz receiver front end for spaceborne applications , 2000 .

[30]  P. Siegel,et al.  Planar diode solid-state receiver for 557 GHz with state-of-the-art performance , 1998 .

[31]  R. A. Stachnik,et al.  Submillimeterwave heterodyne measurements of stratospheric ClO, HCl, O3, and HO2: First results , 1992 .

[32]  Peter H. Siegel,et al.  Development of 200-GHz to 2.7-THz multiplier chains for submillimeter-wave heterodyne receivers , 2000, Astronomical Telescopes + Instrumentation.

[33]  Richard Bradley,et al.  A high-power fixed-tuned millimeter-wave balanced frequency doubler , 1999 .

[34]  I. Mehdi,et al.  A 1.7-1.9 THz local oscillator source , 2004, IEEE Microwave and Wireless Components Letters.

[35]  J. Oh,et al.  The Rotational Spectrum and Molecular Structure of Chlorine Chlorate , 1995 .

[36]  Neal R. Erickson,et al.  A high-power millimeter-wave frequency doubler using a planar diode array , 1993 .

[37]  K. Chance,et al.  Estimating the Abundance of ClO from Simultaneous Remote Sensing Measurements of HO2, OH, and HOCl. , 1995 .

[38]  M. Gurwell,et al.  Submillimeter Wave Astronomy Satellite Performance on the ground and in orbit , 2004 .

[39]  F. von Schéele,et al.  The Odin orbital observatory , 2003 .

[40]  M. Bellini,et al.  THE PURE ROTATION SPECTRUM OF HOCL IN THE SUBMILLIMETER-WAVE REGION , 1995 .

[41]  Joachim Urban,et al.  Optimal sub-millimeter bands for passive limb observations of stratospheric HBr, BrO, HOCl, and HO2 from space , 2003 .

[42]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.