Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations
暂无分享,去创建一个
[1] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[2] Jason Frank,et al. Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..
[3] Zhizhang Chen,et al. Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method , 2001 .
[4] Wenjun Cai,et al. Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations , 2011 .
[5] Jerrold E. Marsden,et al. Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.
[6] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[7] Tingting Liu,et al. Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation , 2002 .
[8] L. Trefethen. Group velocity in finite difference schemes , 1981 .
[9] Yajuan Sun,et al. Symplectic and multisymplectic numerical methods for Maxwell's equations , 2011, J. Comput. Phys..
[10] C. M. Schober,et al. Dispersive properties of multisymplectic integrators , 2008, J. Comput. Phys..
[11] R. McLachlan. Symplectic integration of Hamiltonian wave equations , 1993 .
[12] Zhixiang Huang,et al. Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations , 2008, IEEE Transactions on Antennas and Propagation.
[13] Dong Liang,et al. Energy-Conserved Splitting Finite-Difference Time-Domain Methods for Maxwell's Equations in Three Dimensions , 2010, SIAM J. Numer. Anal..
[14] K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .
[15] Jialin Hong. A Survey of Multi-symplectic Runge-Kutta Type Methods for Hamiltonian Partial Differential Equations , 2006 .
[16] Mengzhao Qin,et al. Multisymplectic Geometry and Multisymplectic Scheme for the Nonlinear Klein Gordon Equation , 2001 .
[17] Bin Wang,et al. New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell’s equations , 2006 .
[18] Brian E. Moore,et al. Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.
[19] Ying Liu,et al. Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .
[20] Jialin Hong,et al. Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term , 2009 .
[21] Alvaro L. Islas,et al. Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..
[22] Jingbo Chen. New schemes for the nonlinear Shrödinger equation , 2001, Appl. Math. Comput..
[23] Jing-Bo Chen. Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation , 2003 .
[24] Jingjing Zhang,et al. Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..
[25] Jerrold E. Marsden,et al. The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .
[26] M. Qin,et al. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .
[27] Bin Wang,et al. Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes , 2004, Appl. Math. Comput..
[28] S. Reich,et al. Numerical methods for Hamiltonian PDEs , 2006 .
[29] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[30] Wei E. I. Sha,et al. Optimal symplectic integrators for numerical solution of time‐domain Maxwell's equations , 2007 .
[31] John B. Schneider,et al. FDTD dispersion revisited: faster-than-light propagation , 1999 .
[32] Zhonghua Qiao,et al. Multisymplectic Preissman scheme for the time-domain Maxwell's equations , 2009 .
[33] Dong Liang,et al. Energy-conserved splitting FDTD methods for Maxwell’s equations , 2007, Numerische Mathematik.
[34] U. Ascher,et al. Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .
[35] Manuel Mañas,et al. Darboux transformations for the nonlinear Schrödinger equations , 1996 .
[36] M. Qin,et al. Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .