Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations

In this paper, we study a multi-symplectic scheme for three dimensional Maxwell's equations in a simple medium. This is a system of PDEs with multi-symplectic structures. We prove that this multi-symplectic scheme preserves the discrete version of local and global energy conservation law and the discrete divergence. Furthermore, we extend the discussion to several dispersion properties of the multi-symplectic scheme including the numerical dispersion relation, the numerical group velocity, the effect of large time steps and the CFL condition.

[1]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[2]  Jason Frank,et al.  Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..

[3]  Zhizhang Chen,et al.  Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method , 2001 .

[4]  Wenjun Cai,et al.  Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations , 2011 .

[5]  Jerrold E. Marsden,et al.  Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.

[6]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[7]  Tingting Liu,et al.  Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation , 2002 .

[8]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[9]  Yajuan Sun,et al.  Symplectic and multisymplectic numerical methods for Maxwell's equations , 2011, J. Comput. Phys..

[10]  C. M. Schober,et al.  Dispersive properties of multisymplectic integrators , 2008, J. Comput. Phys..

[11]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[12]  Zhixiang Huang,et al.  Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations , 2008, IEEE Transactions on Antennas and Propagation.

[13]  Dong Liang,et al.  Energy-Conserved Splitting Finite-Difference Time-Domain Methods for Maxwell's Equations in Three Dimensions , 2010, SIAM J. Numer. Anal..

[14]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[15]  Jialin Hong A Survey of Multi-symplectic Runge-Kutta Type Methods for Hamiltonian Partial Differential Equations , 2006 .

[16]  Mengzhao Qin,et al.  Multisymplectic Geometry and Multisymplectic Scheme for the Nonlinear Klein Gordon Equation , 2001 .

[17]  Bin Wang,et al.  New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell’s equations , 2006 .

[18]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[19]  Ying Liu,et al.  Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .

[20]  Jialin Hong,et al.  Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term , 2009 .

[21]  Alvaro L. Islas,et al.  Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs , 2005, Math. Comput. Simul..

[22]  Jingbo Chen New schemes for the nonlinear Shrödinger equation , 2001, Appl. Math. Comput..

[23]  Jing-Bo Chen Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation , 2003 .

[24]  Jingjing Zhang,et al.  Splitting multisymplectic integrators for Maxwell's equations , 2010, J. Comput. Phys..

[25]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[26]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .

[27]  Bin Wang,et al.  Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes , 2004, Appl. Math. Comput..

[28]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[29]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[30]  Wei E. I. Sha,et al.  Optimal symplectic integrators for numerical solution of time‐domain Maxwell's equations , 2007 .

[31]  John B. Schneider,et al.  FDTD dispersion revisited: faster-than-light propagation , 1999 .

[32]  Zhonghua Qiao,et al.  Multisymplectic Preissman scheme for the time-domain Maxwell's equations , 2009 .

[33]  Dong Liang,et al.  Energy-conserved splitting FDTD methods for Maxwell’s equations , 2007, Numerische Mathematik.

[34]  U. Ascher,et al.  Multisymplectic box schemes and the Korteweg{de Vries equation , 2004 .

[35]  Manuel Mañas,et al.  Darboux transformations for the nonlinear Schrödinger equations , 1996 .

[36]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .