A hierarchical on-line path planning scheme using wavelets

We present an algorithm for solving the shortest (collision-free) path planning problem for an agent (e.g., wheeled vehicle, UAV) operating in a partially known environment. The agent has detailed knowledge of the environment and the obstacles only in the vicinity of its current position. Far away obstacles or the final destination are only partially known and may even change dynamically at each instant of time. We obtain an approximation of the environment at different levels of fidelity using a wavelet approximation scheme. This allows the construction of a directed weighted graph of the obstacle-free space in a computationally efficient manner. In addition, the dimension of the graph can be adapted to the on-board computational resources. By searching this graph we find the desired shortest path to the final destination using Dijkstra's algorithm, provided that such a path exists. Simulations are presented to test the efficiency of the algorithm using non trivial scenarios.

[1]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[2]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[3]  A. Isidori Nonlinear Control Systems , 1985 .

[4]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[5]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[6]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[7]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[8]  D. Walnut An Introduction to Wavelet Analysis , 2004 .

[9]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[11]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[13]  Sven Behnke,et al.  Local Multiresolution Path Planning , 2003, RoboCup.

[14]  Hiroshi Noborio,et al.  A quadtree-based path-planning algorithm for a mobile robot , 1990, J. Field Robotics.

[15]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[16]  Datta N. Godbole,et al.  Active multi-model control for dynamic maneuver optimization of unmanned air vehicles , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Frank Harary,et al.  Graph Theory , 2016 .

[19]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[20]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[21]  Anthony Stentz,et al.  The Delayed D* Algorithm for Efficient Path Replanning , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[23]  Dinesh K. Pai,et al.  Multiresolution rough terrain motion planning , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[24]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[25]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[26]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[27]  Sven Koenig,et al.  Improved fast replanning for robot navigation in unknown terrain , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[29]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[30]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[31]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.