Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors

In this paper, we present a physics-based full three-dimensional (3-D) numerical simulation of simultaneous two-color medium-wave infrared long-wave infrared (MWIR-LWIR) and LWIR-very-long-wave infrared (VLWIR) detectors. The present approach avoids geometrical simplifications typical of one- or two-dimensional models that can introduce errors which are difficult to quantify. We include all the relevant material physics and the drift-diffusion equations are solved on a 3-D finite element grid. We simulate device structures that have been fabricated and characterized for operation in the MWIR-LWIR spectral regions and compare the numerical results with the measured values. Furthermore, we apply the same model to predict the performance of similar detector structures intended for operation in the LWIR-VLWIR spectral regions.

[1]  R. K. Bhan,et al.  Effect of built-in electric field on crosstalk in focal plane arrays using HgCdTe epilayers , 1998 .

[2]  K. Kosai,et al.  Status and application of HgCdTe device modeling , 1995 .

[3]  H. Robinson Process modeling of HgCdTe infrared photodetectors , 1998 .

[4]  P. Perfetti,et al.  The problem of heterojunction band discontinuities , 1987 .

[5]  Yael Nemirovsky,et al.  Infrared optical absorption of Hg1−xCdxTe , 1979 .

[6]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .

[7]  M. Tidrow,et al.  Infrared sensors for ballistic missile defense , 2001 .

[8]  M. Henini,et al.  Properties of narrow gap cadmium-based compounds , 1995 .

[9]  Luigi Colombo,et al.  Minority‐carrier lifetime in indium‐doped n‐type Hg0.78Cd0.22Te liquid‐phase‐epitaxial films , 1992 .

[10]  Marion B. Reine,et al.  HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.

[11]  Pradip Mitra,et al.  Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs , 1998, Defense, Security, and Sensing.

[12]  Yael Nemirovsky,et al.  Trap‐assisted tunneling in mercury cadmium telluride photodiodes , 1992 .

[13]  R. Pratt,et al.  Minority‐carrier lifetime in doped and undoped n‐type CdxHg1−xTe , 1986 .

[14]  J. S. Blakemore Semiconductor Statistics , 1962 .

[15]  M. Schilfgaarde,et al.  Defect modeling studies in HgCdTe and CdTe , 1995 .

[16]  C. A. Hougen,et al.  Model for infrared absorption and transmission of liquid‐phase epitaxy HgCdTe , 1989 .

[17]  Jagmohan Bajaj,et al.  Advances in large-area Hg1-xCdxTe photovoltaic detectors for remote sensing applications , 2001, SPIE Optics + Photonics.

[18]  E. Finkman,et al.  The exponential optical absorption band tail of Hg1−xCdxTe , 1984 .

[19]  P. Petersen Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .

[20]  Marion B. Reine Review of HgCdTe photodiodes for IR detection , 2000, Defense, Security, and Sensing.

[22]  D. Bouldin The measurement of alpha particle emissions from semiconductor memory materials , 1981 .

[23]  T. Parodos,et al.  Advances in composition control for 16 µm LPE P-on-n HgCdTe heterojunction photodiodes for remote sensing applications at 60K , 1999 .

[24]  M. B. Reine,et al.  Predicted performance of HgCdTe photodiodes for 15-25 μm detection , 2005, SPIE Defense + Commercial Sensing.

[25]  J. Faurie,et al.  Minority‐carrier lifetime in p‐type (111)B HgCdTe grown by molecular‐beam epitaxy , 1990 .

[26]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .

[27]  Jaroslaw Rutkowski,et al.  Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes , 2001 .

[28]  Full band structure calculation of minority carrier lifetimes in HgCdTe and thallium-based alloys , 1998 .

[29]  M. A. Kinch,et al.  Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .

[30]  C. L. Jones,et al.  Minority carrier lifetime in n‐type Bridgman grown Hg1−xCdxTe , 1983 .

[31]  E. Finkman,et al.  Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects , 1985 .

[32]  S. Sivananthan,et al.  Carrier recombination in indium‐doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy , 1994 .

[33]  Pradip Mitra,et al.  MOVPE growth of HgCdTe for high performance 3–5 µm photodiodes operating at 100–180K , 1999 .

[34]  Arden Sher,et al.  Accurate calculation of Auger rates in infrared materials , 1997 .

[35]  G. M. Williams,et al.  Numerical simulation of HgCdTe detector characteristics , 1995 .

[36]  Jeremiah R. Lowney,et al.  Intrinsic carrier concentration of narrow‐gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap , 1992 .

[37]  V. Gopal,et al.  Infrared detector performance in an area array , 2001 .

[38]  M. Muller,et al.  How dislocations affect transport , 1995 .

[39]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of integrated multispectral HgCdTe photodiodes for the detection of mid-wave infrared radiation , 1998 .

[40]  P. Norton HgCdTe Infrared Detectors , 2002 .

[41]  M. Kruer,et al.  Auger‐limited carrier lifetimes in HgCdTe at high excess carrier concentrations , 1974 .

[42]  E. A. Patten,et al.  High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy , 1997 .

[43]  Pradip Mitra,et al.  MOVPE growth of HgCdTe for bandgap engineered IR detector arrays , 1999, Photonics West.

[44]  Antoni Rogalski,et al.  Effect of dislocations on performance of LWIR HgCdTe photodiodes , 2000 .

[45]  S. Krishnamurthy,et al.  A detailed calculation of the auger lifetime in p-type HgCdTe , 2000 .

[46]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[47]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors , 1998 .

[48]  J. Schmit,et al.  Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .

[49]  V. Gopal,et al.  Optimum diode geometry in a two-dimensional photovoltaic array , 2000 .

[50]  Jeremiah R. Lowney,et al.  Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .

[51]  J. G. Pasko,et al.  Measurement of minority carrier lifetime in n-type MBE HgCdTe and its dependence on annealing , 1998 .

[52]  Pradip Mitra,et al.  Progress in MOVPE of HgCdTe for advanced infrared detectors , 1998 .

[53]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[54]  M. B. Reine,et al.  Chapter 6 Photovoltaic Infrared Detectors , 1981 .

[55]  Gad Bahir,et al.  A model for the trap-assisted tunneling mechanism in diffused n-p and implanted n/sup +/-p HgCdTe photodiodes , 1992 .

[56]  A. Rogalski Infrared detectors: status and trends , 2003 .