Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors
暂无分享,去创建一个
[1] R. K. Bhan,et al. Effect of built-in electric field on crosstalk in focal plane arrays using HgCdTe epilayers , 1998 .
[2] K. Kosai,et al. Status and application of HgCdTe device modeling , 1995 .
[3] H. Robinson. Process modeling of HgCdTe infrared photodetectors , 1998 .
[4] P. Perfetti,et al. The problem of heterojunction band discontinuities , 1987 .
[5] Yael Nemirovsky,et al. Infrared optical absorption of Hg1−xCdxTe , 1979 .
[6] F. C. Case,et al. Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .
[7] M. Tidrow,et al. Infrared sensors for ballistic missile defense , 2001 .
[8] M. Henini,et al. Properties of narrow gap cadmium-based compounds , 1995 .
[9] Luigi Colombo,et al. Minority‐carrier lifetime in indium‐doped n‐type Hg0.78Cd0.22Te liquid‐phase‐epitaxial films , 1992 .
[10] Marion B. Reine,et al. HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.
[11] Pradip Mitra,et al. Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs , 1998, Defense, Security, and Sensing.
[12] Yael Nemirovsky,et al. Trap‐assisted tunneling in mercury cadmium telluride photodiodes , 1992 .
[13] R. Pratt,et al. Minority‐carrier lifetime in doped and undoped n‐type CdxHg1−xTe , 1986 .
[14] J. S. Blakemore. Semiconductor Statistics , 1962 .
[15] M. Schilfgaarde,et al. Defect modeling studies in HgCdTe and CdTe , 1995 .
[16] C. A. Hougen,et al. Model for infrared absorption and transmission of liquid‐phase epitaxy HgCdTe , 1989 .
[17] Jagmohan Bajaj,et al. Advances in large-area Hg1-xCdxTe photovoltaic detectors for remote sensing applications , 2001, SPIE Optics + Photonics.
[18] E. Finkman,et al. The exponential optical absorption band tail of Hg1−xCdxTe , 1984 .
[19] P. Petersen. Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .
[20] Marion B. Reine. Review of HgCdTe photodiodes for IR detection , 2000, Defense, Security, and Sensing.
[22] D. Bouldin. The measurement of alpha particle emissions from semiconductor memory materials , 1981 .
[23] T. Parodos,et al. Advances in composition control for 16 µm LPE P-on-n HgCdTe heterojunction photodiodes for remote sensing applications at 60K , 1999 .
[24] M. B. Reine,et al. Predicted performance of HgCdTe photodiodes for 15-25 μm detection , 2005, SPIE Defense + Commercial Sensing.
[25] J. Faurie,et al. Minority‐carrier lifetime in p‐type (111)B HgCdTe grown by molecular‐beam epitaxy , 1990 .
[26] A. Syllaios,et al. Minority carrier lifetime in mercury cadmium telluride , 1993 .
[27] Jaroslaw Rutkowski,et al. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes , 2001 .
[28] Full band structure calculation of minority carrier lifetimes in HgCdTe and thallium-based alloys , 1998 .
[29] M. A. Kinch,et al. Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .
[30] C. L. Jones,et al. Minority carrier lifetime in n‐type Bridgman grown Hg1−xCdxTe , 1983 .
[31] E. Finkman,et al. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects , 1985 .
[32] S. Sivananthan,et al. Carrier recombination in indium‐doped HgCdTe(211)B epitaxial layers grown by molecular beam epitaxy , 1994 .
[33] Pradip Mitra,et al. MOVPE growth of HgCdTe for high performance 3–5 µm photodiodes operating at 100–180K , 1999 .
[34] Arden Sher,et al. Accurate calculation of Auger rates in infrared materials , 1997 .
[35] G. M. Williams,et al. Numerical simulation of HgCdTe detector characteristics , 1995 .
[36] Jeremiah R. Lowney,et al. Intrinsic carrier concentration of narrow‐gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap , 1992 .
[37] V. Gopal,et al. Infrared detector performance in an area array , 2001 .
[38] M. Muller,et al. How dislocations affect transport , 1995 .
[39] E. A. Patten,et al. Molecular beam epitaxial growth and performance of integrated multispectral HgCdTe photodiodes for the detection of mid-wave infrared radiation , 1998 .
[40] P. Norton. HgCdTe Infrared Detectors , 2002 .
[41] M. Kruer,et al. Auger‐limited carrier lifetimes in HgCdTe at high excess carrier concentrations , 1974 .
[42] E. A. Patten,et al. High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy , 1997 .
[43] Pradip Mitra,et al. MOVPE growth of HgCdTe for bandgap engineered IR detector arrays , 1999, Photonics West.
[44] Antoni Rogalski,et al. Effect of dislocations on performance of LWIR HgCdTe photodiodes , 2000 .
[45] S. Krishnamurthy,et al. A detailed calculation of the auger lifetime in p-type HgCdTe , 2000 .
[46] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[47] E. A. Patten,et al. Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors , 1998 .
[48] J. Schmit,et al. Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .
[49] V. Gopal,et al. Optimum diode geometry in a two-dimensional photovoltaic array , 2000 .
[50] Jeremiah R. Lowney,et al. Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .
[51] J. G. Pasko,et al. Measurement of minority carrier lifetime in n-type MBE HgCdTe and its dependence on annealing , 1998 .
[52] Pradip Mitra,et al. Progress in MOVPE of HgCdTe for advanced infrared detectors , 1998 .
[53] T. N. Casselman,et al. Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .
[54] M. B. Reine,et al. Chapter 6 Photovoltaic Infrared Detectors , 1981 .
[55] Gad Bahir,et al. A model for the trap-assisted tunneling mechanism in diffused n-p and implanted n/sup +/-p HgCdTe photodiodes , 1992 .
[56] A. Rogalski. Infrared detectors: status and trends , 2003 .