Voltage-dependent channel formation by rods of helical polypeptides

[1]  H. Brückner,et al.  Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mnoldTrichoderma reesei. Part B , 1984, Experientia.

[2]  H. Kolb,et al.  Analysis of the multi-pore system of alamethicin in a lipid membrane , 1978, The Journal of Membrane Biology.

[3]  H. Kolb,et al.  Analysis of the multi-pore system of alamethicin in a lipid membrane , 1978, The Journal of Membrane Biology.

[4]  G. Roy Properties of the conductance induced in lecithin bilayer membranes by alamethicin , 1975, The Journal of Membrane Biology.

[5]  C. Mead,et al.  The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes , 1973, The Journal of Membrane Biology.

[6]  A. Finkelstein,et al.  Single-length and double-length channels formed by nystatin in lipid bilayer membranes , 2005, The Journal of Membrane Biology.

[7]  G. Boheim Statistical analysis of alamethicin channels in black lipid membranes , 2005, The Journal of Membrane Biology.

[8]  G. Jung,et al.  Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles , 1983, Biophysics of structure and mechanism.

[9]  P. Balaram,et al.  Alamethicin and related membrane channel forming polypeptides , 2004, Molecular and Cellular Biochemistry.

[10]  G. Schwarz,et al.  Molecular shape and dipole moment of alamethicin-like synthetic peptides , 2004, European Biophysics Journal.

[11]  G. Jung,et al.  CARBON-13 NMR SPECTROSCOPIC CONTROL OF THE SYNTHESIS OF ALAMETHICIN F 30 AND ITS SEGMENTS , 1985 .

[12]  H. Schmitt,et al.  Crystal structure of Boc‐Leu‐Aib‐Pro‐Val‐Aib‐Aib‐Glu(OBzl)‐Gln‐Phl × H2O, the C‐terminal nonapeptide of the voltage‐dependent ionophore alamethicin , 1985 .

[13]  G. Jung,et al.  Crystal structure of the α‐helical undecapeptide Boc‐L‐Ala‐Aib‐Ala‐Aib‐Ala‐Glu(OBzl)‐Ala‐Aib‐Ala‐Aib‐Ala‐OMe , 1985 .

[14]  G. Jung,et al.  Sequence and Conformation of Suzukacillin A , 1985 .

[15]  G. Jung,et al.  Total Synthesis of the α‐Helical Eicosapeptide Antibiotic Alamethicin , 1985 .

[16]  H. Brückner,et al.  Trichotoxin A40. Purification by counter-current distribution and sequencing of isolated fragments. , 1985, Biochimica et biophysica acta.

[17]  Wim G. J. Hol,et al.  The role of the α-helix dipole in protein function and structure , 1985 .

[18]  G. Sheldrick,et al.  PEPTIDE STRUCTURES OF THE ALAMETHICIN SEQUENCE: THE C-TERMINAL α/310-HELICAL NONAPEPTIDE AND TWO PENTAPEPTIDES OF OPPOSITE 310-HELICITY , 1984 .

[19]  H. Brückner,et al.  Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry , 1984 .

[20]  T. M. Balasubramanian,et al.  Alamethicin. A rich model for channel behavior. , 1984, Biophysical journal.

[21]  M. Mathew,et al.  A helix dipole model for alamethicin and related transmembrane channels , 1983 .

[22]  G. Jung,et al.  Structure of the 310-helical pentapeptide Boc-Aib-L-Ala-Aib-L-Ala-Aib-OMe dihydrate, C24H43N5O8.2H2O , 1983 .

[23]  G. Schwarz,et al.  Solvent-dependent structural features of the membrane active peptide trichotoxin A40 as reflected in its dielectric dispersion. , 1983, Biochimica et biophysica acta.

[24]  G. Boheim,et al.  Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. , 1983, Biochimica et biophysica acta.

[25]  G. Jung,et al.  Stabilizing effects of 2‐methylalanine residues on β‐turns and α‐helices , 1983 .

[26]  Y. Trudelle,et al.  Peptides as channel‐making ionophores: Conformational aspects , 1983, Biopolymers.

[27]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[28]  H. Brückner,et al.  Synthesis of L-Prolyl-leucyl-α-aminoisobutyryl-α-amino-isobutyryl-glutamyl-valinol and Proof of Identity with the Isolated C-Terminal Fragment of Trichotoxin A-40 , 1982 .

[29]  R. Muller,et al.  Monazomycin-induced single channels. II. Origin of the voltage dependence of the macroscopic conductance , 1982, The Journal of general physiology.

[30]  R. Muller,et al.  Monazomycin-induced single channels. I. Characterization of the elementary conductance events , 1982, The Journal of general physiology.

[31]  A. Gliozzi,et al.  Transport in Biomembranes: Model Systems and Reconstitution , 1982 .

[32]  G. Schwarz,et al.  Structural and dipolar properties of the voltage-dependent pore former alamethicin in octanol/dioxane. , 1982, Biophysical journal.

[33]  G. Jung,et al.  The α‐helical conformation of the undecapeptide boc‐l‐Ala‐[Aib‐Ala]2‐Glu(OBzl)‐Ala‐[Aib‐Ala]2‐OMe: Synthesis, X‐Ray crystal structure, and conformation in solution , 1982 .

[34]  R. Yantorno,et al.  Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers. , 1982, Biophysical journal.

[35]  H. Seto,et al.  STRUCTURE OF MONAZOMYCIN, A NEW IONOPHOROUS ANTIBIOTIC , 1982 .

[36]  G. Zampighi,et al.  Alamethicin-induced changes in lipid bilayer morphology. , 1982, Biochimica et biophysica acta.

[37]  James E. Hall,et al.  Two purified fractions of alamethicin have different conductance properties , 1982 .

[38]  G. Sheldrick,et al.  On the Structure of the Helical N‐Terminus in Alamethicin—α‐Helix or 310‐Helix? , 1981 .

[39]  K. Keough,et al.  Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines. , 1981, Biochemistry.

[40]  H. Seto,et al.  Structure of monazomycin, a new ionophohous antibiotic , 1981 .

[41]  C. Sander,et al.  Dipoles of the alpha-helix and beta-sheet: their role in protein folding. , 1981, Nature.

[42]  D. Edmonds Membrane ion channels and ionic hydration energies , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  G. Boheim,et al.  Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H. Brückner,et al.  Gas chromatographic determination of the configuration of isovaline in antiamoebin, samarosporin (emerimicin IV), stilbellin, suzukacillins and trichotoxins , 1980 .

[45]  G Boheim,et al.  The lowest conductance state of the alamethicin pore. , 1980, Biochimica et biophysica acta.

[46]  R. Bradley,et al.  Characterisation of a synthetic, voltage-dependent, cation-selective transmembrane channel , 1978, Nature.

[47]  H. Berendsen,et al.  The α-helix dipole and the properties of proteins , 1978, Nature.

[48]  R. C. Pandey,et al.  Mass spectrometric determination of molecular formulas for membrane-modifying antibiotics , 1977, Nature.

[49]  R. Muller,et al.  Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. II. Inactivation produced by monazomycin transport through the membrane , 1976, The Journal of general physiology.

[50]  R. Muller,et al.  Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions , 1976, The Journal of general physiology.

[51]  D. Leibfritz,et al.  Structural and membrane modifying porperties of suzukacillin, a peptide antibiotic related to alamethicin. Part B. Pore formation in black lipid films. , 1976, Biochimica et biophysica acta.

[52]  P. Mueller Molecular aspects of electrical excitation in lipid bilayers and cell membranes. , 1976, Horizons in biochemistry and biophysics.

[53]  G. Jung,et al.  Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study. , 1975, European journal of biochemistry.

[54]  A. Marty,et al.  Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action , 1975, The Journal of general physiology.

[55]  A. Finkelstein,et al.  Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. , 1973, Membranes.

[56]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Muller,et al.  Voltage-Dependent Conductance Induced in Thin Lipid Membranes by Monazomycin , 1972, The Journal of general physiology.

[58]  D. Haydon,et al.  The unit conductance channel of alamethicin. , 1972, Biochimica et biophysica acta.

[59]  D. O. Rudin,et al.  Resting and action potentials in experimental bimolecular lipid membranes. , 1968, Journal of theoretical biology.

[60]  M. Shimizu [Electrolyte solutions]. , 2019, [Kango] Japanese journal of nursing.