Enhanced Directivity From Subwavelength Infrared/Optical Nano-Antennas Loaded With Plasmonic Materials or Metamaterials

Here, we explore theoretically the concept of enhanced directivity from electrically small subwavelength radiators containing negative-parameter materials, such as plasmonic materials with negative permittivity at THz, infrared and optical frequencies. In particular, we study higher order plasmonic resonances of a subwavelength core-shell spherical nano-antenna, and we analyze the near-zone field distributions and far-field radiation patterns of such a structure when it is excited by a small dipole source, demonstrating analytically and numerically the possibility of having highly directive patterns from a nano-structure with electrically small dimensions. Radiation characteristics and intrinsic limitations on performance are analyzed in detail, and a potential application of this novel technique for super-resolution detection of the displacement of a nano-object is also pointed out.

[1]  Resonant scattering of light by small particles , 2008 .

[2]  Richard W. Ziolkowski,et al.  Metamaterial-based efficient electrically small antennas , 2006 .

[3]  F. Capolino,et al.  Analysis of directive radiation from a line source in a metamaterial slab with low permittivity , 2006, IEEE Transactions on Antennas and Propagation.

[4]  C. Rohde,et al.  Enhanced surface-plasmon resonance absorption in metal-dielectric-metal layered microspheres. , 2005, Optics letters.

[5]  A. Pidwerbetsky,et al.  Electrically small antenna elements using negative permittivity resonators , 2005, IEEE Transactions on Antennas and Propagation.

[6]  N. Engheta,et al.  Metamaterial covers over a small aperture , 2004, IEEE Transactions on Antennas and Propagation.

[7]  A. Pidwerbetsky,et al.  Electrically small antenna elements using negative permittivity resonators , 2006, 2005 IEEE Antennas and Propagation Society International Symposium.

[8]  A. Grbic,et al.  An isotropic three-dimensional negative-refractive-index transmission-line metamaterial , 2005 .

[9]  Andrea Alù,et al.  An Overview of Salient Properties of Planar Guided‐Wave Structures with Double‐Negative (DNG) and Single‐Negative (SNG) Layers , 2005 .

[10]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[11]  C. Soukoulis,et al.  Isotropic three-dimensional left-handed metamaterials , 2005, cond-mat/0504348.

[12]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Stefan Schelm,et al.  Internal electric field densities of metal nanoshells. , 2005, The journal of physical chemistry. B.

[14]  N. Engheta,et al.  Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and∕or double-positive metamaterial layers , 2004, physics/0410011.

[15]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[16]  Naomi J. Halas,et al.  Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles , 2004 .

[17]  Jin Au Kong,et al.  Time-domain electromagnetic energy in a frequency-dispersive left-handed medium , 2004 .

[18]  Vladimir M. Shalaev,et al.  Magnetic resonance in metal nanoantennas , 2004, SPIE Optics + Photonics.

[19]  Experimental investigation of subwavelength resonator based on backward-wave meta-material , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[20]  N. Engheta,et al.  Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[21]  Andrea Alù,et al.  Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency , 2003 .

[22]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[23]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[24]  L. Solymar,et al.  Configurations optimizing the directivity of planar arrays , 2002 .

[25]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[26]  M. Sigalas,et al.  Metallic photonic crystals at optical wavelengths , 2000 .

[27]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[28]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[29]  S. L. Westcott,et al.  Infrared extinction properties of gold nanoshells , 1999 .

[30]  Naomi J. Halas,et al.  Light scattering from dipole and quadrupole nanoshell antennas , 1999 .

[31]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[32]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[33]  N. Alexopoulos,et al.  Radiation properties of microstrip elements in a dispersive substrate of permittivity less than unity , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[34]  N. Halas,et al.  Higher Order Plasmon Resonances of Gold Nanoshells , 1998 .

[35]  C. A. Grimes,et al.  Bandwidth and Q of antennas radiating TE and TM modes , 1995 .

[36]  A. Sihvola Dielectric polarizability of a sphere with arbitrary anisotropy. , 1994, Optics letters.

[37]  W. Press,et al.  Bessel Functions of Fractional Order , 1991 .

[38]  P. Barber Absorption and scattering of light by small particles , 1984 .

[39]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[40]  M. M. Dawoud,et al.  Design of superdirective arrays with high radiation efficiency , 1978 .

[41]  I. Bahl,et al.  A leaky-wave antenna using an artificial dielectric medium , 1974 .

[42]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[43]  R. Englman,et al.  Optical lattice vibrations in finite ionic crystals: I , 1968 .

[44]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[45]  R. Collin,et al.  Evaluation of antenna Q , 1964 .

[46]  T. A. A. BROADBENT Legendre Functions , 1959, Nature.

[47]  L. Solymar,et al.  Maximum gain of a line source antenna if the distribution fuction is a finite fourier series , 1958 .

[48]  R. Harrington On the gain and beamwidth of directional antennas , 1958 .

[49]  M. Uzsoky,et al.  Theory of super-directive linear arrays , 1956 .

[50]  G. D. Francia Directivity, super-gain and information , 1956 .

[51]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[52]  S. Schelkunoff A mathematical theory of linear arrays , 1943 .