P-stable Mono-Implicit Runge-Kutta-Nyström Modifications of the Numerov Method
暂无分享,去创建一个
Guido Vanden Berghe | Marnix Van Daele | Hans De Meyer | T. Van Hecke | H. Meyer | G. Berghe | M. V. Daele | T. Hecke
[1] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[2] T. E. Simos,et al. Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .
[3] Jeff Cash. High orderP-stable formulae for the numerical integration of periodic initial value problems , 1981 .
[4] Guido Vanden Berghe,et al. A modified numerov integration method for general second order initial value Problems , 1991, Int. J. Comput. Math..
[5] E. Hairer. Unconditionally stable methods for second order differential equations , 1979 .
[6] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[7] R. Thomas,et al. Phase properties of high order, almostP-stable formulae , 1984 .
[8] E. Hairer,et al. A theory for Nyström methods , 1975 .
[9] Ernst Hairer. Méthodes de Nyström pour l'équation différentielley″=f(x, y) , 1976 .
[10] H. De Meyer,et al. A mono-implicit Runge-Kutta-Nyström modification of the Numerov method , 1997 .
[11] J. M. Franco. An explicit hybrid method of Numerov type for second-order periodic initial-value problems , 1995 .
[12] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[13] John P. Coleman,et al. Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .
[14] H. De Meyer,et al. A modified numerov integration method for second order periodic initial-value problems , 1990 .
[15] M. Rizea,et al. A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .
[16] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[17] Guido Vanden Berghe,et al. A general theory of stabilized extended one-step methods for odes , 1996, Int. J. Comput. Math..