Challenges of Modeling Steam Cracking of Heavy Feedstocks

Today single event microkinetic (SEMK) models for steam cracking of hydrocarbons allow simulating the conversion of heavy fractions. The key challenge to model the cracking behavior of these heavy feedstocks is related to feedstock reconstruction. The latter depends on the required level of molecular detail of the reaction network and of the feedstock characterization/ reconstruction model. This is illustrated for gas condensate feedstocks. Comparison of yield predictions with yields obtained in a pilot plant illustrate how uncertainties in the feedstock characterization propagate to the simulation results. The combination of a SEMK model and the feedstock reconstruction method based on maximization of the Shannon entropy allows to obtain accurate simulation results, provided that the specific density, the global PIONA weight or volume fractions, and the initial, 50% and final boiling point are known. Specifying less commercial indices results in a decrease of the agreement between simulated and experimentally obtained product yields. The developed methodology can be extended in a straight forward way to any heavy feedstock.

[1]  P. Galtier,et al.  From single events theory to molecular kinetics—application to industrial process modelling , 2003 .

[2]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[3]  David T. Allen,et al.  Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures , 1989 .

[4]  W. A. Dietz,et al.  Response Factors for Gas Chromatographic Analyses , 1967 .

[5]  P. Galtier,et al.  Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis , 2006 .

[6]  Shengtai Li,et al.  Design of new Daspk for Sensitivity Analysis , 1999 .

[7]  Silviu Guiasu,et al.  The principle of maximum entropy , 1985 .

[8]  Gilbert F. Froment,et al.  Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts , 1985 .

[9]  J. Phillips,et al.  Comprehensive multi-dimensional gas chromatography , 1995 .

[10]  Eladio Pardillo-Fontdevila,et al.  ESTIMATION OF HYDROCARBON PROPERTIES FROM GROUP-INTERACTION CONTRIBUTIONS , 1999 .

[11]  Michel Waroquier,et al.  Ab initio group contribution method for activation energies for radical additions , 2004 .

[12]  A. Marshall,et al.  Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. , 2002, Analytical chemistry.

[13]  Matthew Neurock,et al.  Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms , 1994 .

[14]  J. Warnatz,et al.  Automatic generation of reaction mechanisms for the description of the oxidation of higher hydrocarbons , 1990 .

[15]  F. O. Rice,et al.  The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. XII. The Decomposition of Methane , 1934 .

[16]  Pierre-Alexandre Glaude,et al.  Modeling of the gas-phase oxidation of cyclohexane , 2006 .

[17]  Gilbert F. Froment,et al.  Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors , 1988 .

[18]  Tiziano Faravelli,et al.  Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures , 1995 .

[19]  G. Marin,et al.  Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites , 2001 .

[20]  David T. Allen,et al.  Structural models for catalytic cracking. 1. Model compound reactions , 1989 .

[21]  K. Herzfeld,et al.  The Mechanism of Some Chain Reactions. , 1951 .

[22]  G. C. Klein,et al.  Oil Reservoir Characterization via Crude Oil Analysis by Downhole Fluid Analysis in Oil Wells with Visible−Near-Infrared Spectroscopy and by Laboratory Analysis with Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry , 2006 .

[23]  Kevin Van Geem,et al.  Automatic reaction network generation using RMG for steam cracking of n‐hexane , 2006 .

[24]  M. Riazi Characterization and Properties of Petroleum Fractions , 2005 .

[25]  Eliseo Ranzi,et al.  Initial product distributions from pyrolysis of normal and branched paraffins , 1983 .

[26]  G. Froment,et al.  Computer generation of reaction schemes and rate equations for thermal cracking , 1988 .

[27]  Linda J. Broadbelt,et al.  Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates , 1994 .

[28]  D. Espinat,et al.  Physicochemical Characterization of Petroleum Fractions: the State of the Art , 2007 .

[29]  Tiziano Faravelli,et al.  Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures , 2001 .

[30]  G. Marin,et al.  A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation , 2001 .

[31]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[32]  Kevin Van Geem,et al.  Two Severity Indices for Scale-Up of Steam Cracking Coils , 2005 .

[33]  Damien Hudebine Reconstruction moléculaire de coupes pétrolières , 2003 .

[34]  Pierre-Alexandre Glaude,et al.  Computer Based Generation of Reaction Mechanisms for Gas-phase Oxidation , 2000, Comput. Chem..

[35]  Gilbert F. Froment,et al.  Single-event kinetics of catalytic cracking , 1993 .

[36]  F. O. Rice THE THERMAL DECOMPOSITION OF ORGANIC COMPOUNDS FROM THE STANDPOINT OF FREE RADICALS. I. SATURATED HYDROCARBONS , 1931 .

[37]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—III. An example: alkylation of olefins , 1997 .

[38]  U. Brinkman,et al.  Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. , 2003, Journal of chromatography. A.

[39]  Gilbert F. Froment,et al.  Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization , 1989 .

[40]  Guy Marin,et al.  The Influence of Dimethyl Disulfide on Naphtha Steam Cracking , 2001 .

[41]  Laurent Duval,et al.  Comprehensive Two-Dimensional Gas Chromatography for Detailed Characterisation of Petroleum Products , 2007 .

[42]  F. P. Di Maio,et al.  KING, a KInetic Network Generator , 1992 .

[43]  James Wei,et al.  Lumping Analysis in Monomolecular Reaction Systems. Analysis of Approximately Lumpable System , 1969 .

[44]  Michael L. Mavrovouniotis,et al.  Construction of complex reaction systems—I. Reaction description language , 1997 .

[45]  Guy B. Marin,et al.  Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices , 2007, Comput. Chem. Eng..

[46]  Sunwon Park,et al.  Pyrolysis Reaction Mechanism for Industrial Naphtha Cracking Furnaces , 2001 .

[47]  Gilbert F. Froment,et al.  Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons , 1995 .

[48]  William H. Green,et al.  Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis , 2003 .

[49]  Matthew Neurock,et al.  Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling , 1994 .

[50]  Stephen B. Jaffe,et al.  Building useful models of complex reaction systems in petroleum refining , 1996 .

[51]  Michel Waroquier,et al.  Ab initio group contribution method for activation energies of hydrogen abstraction reactions. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  Tiziano Faravelli,et al.  Kinetic Modelling of Pyrolysis Processes in Gas and Condensed Phase , 2007 .

[53]  Cory S. Fix Comprehensive multidimensional gas chromatography and modulator development for portable instrumentation , 2009 .

[54]  R. F. Fedors,et al.  A method for estimating both the solubility parameters and molar volumes of liquids , 1974 .

[55]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[56]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[57]  Eliseo Ranzi,et al.  Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) , 1979 .

[58]  Damien Hudebine,et al.  Molecular reconstruction of LCO gasoils from overall petroleum analyses , 2004 .

[59]  Gilbert F. Froment,et al.  Kinetics and reactor design in the thermal cracking for olefins production , 1992 .

[60]  F. O. Rice,et al.  The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. VII. The Ethylidene Radical , 1934 .

[61]  Riazi Characterization and Properties of Petroleum Fractions, First Edition , 2005 .

[62]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[63]  Peter B. Ayscough,et al.  An expert system for hydrocarbon pyrolysis reactions , 1988 .

[64]  Jasvinder Singh,et al.  Reaction pathways and product yields in mild thermal cracking of vacuum residues: A multi-lump kinetic model , 2005 .

[65]  Gilbert F. Froment,et al.  On-line gas chromatographic analysis of hydrocarbon effluents : Calibration factors and their correlation , 1986 .