Map-Based Visual-Inertial Monocular SLAM using Inertial assisted Kalman Filter

In this paper, we present a novel tightly-coupled monocular visual-inertial Simultaneous Localization and Mapping algorithm following an inertial assisted Kalman Filter and reusing the estimated 3D map. By leveraging an inertial assisted Kalman Filter, we achieve an efficient motion tracking bearing fast dynamic movement in the front-end. To enable place recognition and reduce the trajectory estimation drift, we construct a factor graph based non-linear optimization in the back-end. We carefully design a feedback mechanism to balance the front/back ends ensuring the estimation accuracy. We also propose a novel initialization method that accurately estimate the scale factor, the gravity, the velocity, and gyroscope and accelerometer biases in a very robust way. We evaluated the algorithm on a public dataset, when compared to other state-of-the-art monocular Visual-Inertial SLAM approaches, our algorithm achieves better accuracy and robustness in an efficient way. By the way, we also evaluate our algorithm in a MonocularInertial setup with a low cost IMU to achieve a robust and lowdrift realtime SLAM system.

[1]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[2]  Jörg Stückler,et al.  Direct visual-inertial odometry with stereo cameras , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[5]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[7]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[8]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[9]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Dongbing Gu,et al.  Robust direct visual inertial odometry via entropy-based relative pose estimation , 2015, 2015 IEEE International Conference on Mechatronics and Automation (ICMA).

[11]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[12]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[13]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[15]  Salah Sukkarieh,et al.  Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions , 2012, IEEE Transactions on Robotics.

[16]  Hauke Strasdat,et al.  Visual SLAM: Why filter? , 2012, Image Vis. Comput..

[17]  A. Davison,et al.  1-Point RANSAC for EKF Filtering . Application to Real-Time Structure from Motion and Visual Odometry , 2010 .

[18]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[19]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[20]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[22]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[23]  Marc Pollefeys,et al.  Semi-direct EKF-based monocular visual-inertial odometry , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).