A framework for online investment decisions

ABSTRACT The artificial segmentation of the investment management process into silos of human operators can restrict silos from collectively and adaptively pursuing a unified investment goal. In this article, we argue that the investment process can be accelerated and be made more cohesive by replacing batch processing for component tasks of the investment process with online processing. We propose an integrated and online framework for investment workflows, where components produce outputs that are automatically and sequentially updated as new data arrives. The workflow can be further enhanced to refine signal generation and asset class evolution and definitions. Our results demonstrate that we use this framework in conjunction with resampling methods to optimise component decisions with direct reference to investment objectives while making clear the extent of backtest overfitting. We consider such an online update framework to be a crucial step towards developing intelligent portfolio selection algorithms that integrate financial theory, investor views, and data analysis with process-level learning.

[1]  Romuald Elie,et al.  Reinforcement Learning in Economics and Finance , 2020, Computational Economics.

[2]  Derek Snow,et al.  Machine Learning in Asset Management—Part 1: Portfolio Construction—Trading Strategies , 2019 .

[3]  T. Gebbie,et al.  Learning the dynamics of technical trading strategies , 2019, Quantitative Finance.

[4]  Marcos Lopez de Prado,et al.  Detection of false investment strategies using unsupervised learning methods , 2018, Machine Learning and AI in Finance.

[5]  Andrew E. B. Lim,et al.  Machine Learning and Portfolio Optimization , 2018, Manag. Sci..

[6]  Marcos M. López de Prado,et al.  Advances in Financial Machine Learning: Numerai's Tournament (seminar slides) , 2018, SSRN Electronic Journal.

[7]  Randy O'Toole,et al.  The Black–Litterman model: active risk targeting and the parameter tau , 2017 .

[8]  Campbell R. Harvey,et al.  Backtesting , 2015, The Journal of Portfolio Management.

[9]  David H. Bailey,et al.  The Probability of Backtest Overfitting , 2015 .

[10]  Campbell R. Harvey,et al.  . . . And the Cross-Section of Expected Returns , 2014 .

[11]  Diane Wilcox,et al.  Hierarchical Causality in Financial Economics , 2014, 1408.5585.

[12]  David H. Bailey,et al.  The Deflated Sharpe Ratio: Correcting for Selection Bias, Backtest Overfitting, and Non-Normality , 2014, The Journal of Portfolio Management.

[13]  Frank J. Fabozzi,et al.  60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..

[14]  David H. Bailey,et al.  Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest Overfitting on Out-of-Sample Performance , 2014 .

[15]  Dieter Hendricks,et al.  A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution , 2014, 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr).

[16]  D. Wilcox,et al.  On pricing kernels, information and risk , 2013, 1310.4067.

[17]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[18]  Marcos Lopez de Prado,et al.  The Sharpe Ratio Efficient Frontier , 2012 .

[19]  John H. Cochrane,et al.  Presidential Address: Discount Rates , 2011 .

[20]  P. Dayan,et al.  States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning , 2010, Neuron.

[21]  Attilio Meucci,et al.  The Black-Litterman Approach: Original Model and Extensions , 2008 .

[22]  Lihong Li,et al.  PAC model-free reinforcement learning , 2006, ICML.

[23]  A. Lo The Adaptive Markets Hypothesis , 2004 .

[24]  Allan Borodin,et al.  Can We Learn to Beat the Best Stock , 2003, NIPS.

[25]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[26]  M. Robertson,et al.  Explaining the cross-section of returns in South Africa: Attributes or factor loadings? , 2003 .

[27]  S. Titman,et al.  The Cross-Section of Expected REIT Returns , 2003 .

[28]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[29]  Steven Thorley,et al.  Portfolio Constraints and the Fundamental Law of Active Management , 2001 .

[30]  T. Ng,et al.  A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulse noise , 2000, IEEE Signal Processing Letters.

[31]  Wai Lee,et al.  Theory and Methodology of Tactical Asset Allocation , 2000 .

[32]  J. Noh,et al.  Model for correlations in stock markets , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[34]  R. Haugen,et al.  Commonality in the Determinants of Expected Stock Returns , 1996 .

[35]  S. Titman,et al.  Evidence on the Characteristics of Cross Sectional Variation in Stock Returns , 1996 .

[36]  Erik Ordentlich,et al.  Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.

[37]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[38]  Robert B. Litterman,et al.  Global Portfolio Optimization , 1992 .

[39]  W. Willinger,et al.  Universal Portfolios , 1991 .

[40]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[41]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[42]  Richard Roll,et al.  A Critique of the Asset Pricing Theory''s Tests: Part I , 1977 .

[43]  G. Hunanyan,et al.  Portfolio Selection , 2019, Finanzwirtschaft, Banken und Bankmanagement I Finance, Banks and Bank Management.

[44]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[45]  A. Goldberger,et al.  On Pure and Mixed Statistical Estimation in Economics , 1961 .