Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential

Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) domain technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.

[1]  S. Narayanan,et al.  Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method , 1999 .

[2]  Y. K. Cheung,et al.  Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems , 1981 .

[3]  张小龙,et al.  NONLINEAR STABILITY OF BALANCED ROTOR DUE TO EFFECT OF BALL BEARING INTERNAL CLEARANCE , 2006 .

[4]  T. Apostol Mathematical Analysis , 1957 .

[5]  J. Griffin,et al.  An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems , 1989 .

[6]  Leon O. Chua,et al.  Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies , 1981 .

[7]  A. Luo Regularity and Complexity in Dynamical Systems , 2011 .

[8]  進吾 山内 弾性ロータの非線形振動 : 第1報,新数値計算手法の開発 , 1983 .

[9]  O. Prakash,et al.  EFFECT OF RADIAL INTERNAL CLEARANCE OF A BALL BEARING ON THE DYNAMICS OF A BALANCED HORIZONTAL ROTOR , 2000 .

[10]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[11]  S. T. Noah,et al.  Response and bifurcation analysis of a MDOF rotor system with a strong nonlinearity , 1991 .

[12]  C. E. Hammond,et al.  Efficient numerical treatment of periodic systems with application to stability problems. [in linear systems and structural dynamics] , 1977 .

[13]  Guang Meng,et al.  Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system , 2008 .

[14]  Eric J. Hahn,et al.  Transient rotordynamic modeling of rolling element bearing systems , 2001 .

[15]  K. Y. Sze,et al.  Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method , 2008 .

[16]  S. T. Noah,et al.  Response and stability analysis of piecewise-linear oscillators under multi-forcing frequencies , 1992 .

[17]  Lin Fu-Hua A numerical treatment of the periodic solutions of non-linear vibration systems , 1983 .

[18]  S. T. Noah,et al.  Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach , 1991 .

[19]  S. T. Noah,et al.  QUASI-PERIODIC RESPONSE AND STABILITY ANALYSIS FOR A NON-LINEAR JEFFCOTT ROTOR , 1996 .

[20]  Jean-Jacques Sinou,et al.  Stability and vibration analysis of a complex flexible rotor bearing system , 2008 .

[21]  Haiyan Hu Numerical scheme of locating the periodic response of non-smooth non-autonomous systems of high dimension , 1995 .

[22]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[23]  D. Ewins,et al.  The Harmonic Balance Method with arc-length continuation in rotor/stator contact problems , 2001 .

[24]  Ahmet S. Yigit,et al.  SPRING-DASHPOT MODELS FOR THE DYNAMICS OF A RADIALLY ROTATING BEAM WITH IMPACT , 1990 .

[25]  Alan H. Karp,et al.  A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides , 1990, TOMS.

[26]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .