Reflected Diffusions Defined via the Extended Skorokhod Map

This work introduces the extended Skorokhod problem (ESP) and associated extended Skorokhod map (ESM) that enable a pathwise construction of reflected diffusions that are not necessarily semimartingales. Roughly speaking, given the closure $G$ of an open connected set in ${\mathbb R}^J$, a non-empty convex cone $d(x) \subset {\mathbb R}^J$ specified at each point $x$ on the boundary $\partial G$, and a cadlag trajectory $\psi$ taking values in ${\mathbb R}^J$, the ESM $\bar \Gamma$ defines a constrained version $\phi$ of $\psi$ that takes values in $G$ and is such that the increments of $\phi - \psi$ on any interval $[s,t]$ lie in the closed convex hull of the directions $d(\phi(u)), u \in (s,t]$. When the graph of $d(\cdot)$ is closed, the following three properties are established: (i) given $\psi$, if $(\phi,\eta)$ solve the ESP then $(\phi,\eta)$ solve the corresponding Skorokhod problem (SP) if and only if $\eta$ is of bounded variation; (ii) given $\psi$, any solution $(\phi,\eta)$ to the ESP is a solution to the SP on the interval $[0,\tau_0)$, but not in general on $[0,\tau_0]$, where $\tau_0$ is the first time that $\phi$ hits the set ${\cal V}$ of points $x \in \partial G$ such that $d(x)$ contains a line; (iii) the graph of the ESM $\bar \Gamma$ is closed on the space of cadlag trajectories (with respect to both the uniform and the $J_1$-Skorokhod topologies). The paper then focuses on a class of multi-dimensional ESPs on polyhedral domains with a non-empty ${\cal V}$-set. Uniqueness and existence of solutions for this class of ESPs is established and existence and pathwise uniqueness of strong solutions to the associated stochastic differential equations with reflection is derived. The associated reflected diffusions are also shown to satisfy the corresponding submartingale problem. Lastly, it is proved that these reflected diffusions are semimartingales on $[0,\tau_0]$. One motivation for the study of this class of reflected diffusions is that they arise as approximations of queueing networks in heavy traffic that use the so-called generalised processor sharing discipline.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  S. Varadhan,et al.  Diffusion processes with boundary conditions , 1971 .

[3]  R. Holmes Smoothness of certain metric projections on Hilbert space , 1973 .

[4]  Robert F. Anderson,et al.  Small Random perturbation of dynamical systems with reflecting boundary , 1976, Nagoya Mathematical Journal.

[5]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[6]  K. Bichteler,et al.  Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .

[7]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[8]  Ruth J. Williams Brownian motion in a wedge with oblique reflection at the boundary , 1985 .

[9]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[10]  Ruth J. Williams Reflected brownian motion in a wedge: Semimartingale property , 1985 .

[11]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[12]  Yasumasa Saisho,et al.  Stochastic differential equations for multi-dimensional domain with reflecting boundary , 1987 .

[13]  Ruth J. Williams,et al.  A boundary property of semimartingale reflecting Brownian motions , 1988 .

[14]  Alain Bernard,et al.  Réflexions (ou régulations) de processus dans le premier «orthant» de Rn , 1989 .

[15]  Explicit semimartingale representation of Brownian motion in a wedge , 1990 .

[16]  Hong Chen,et al.  Discrete Flow Networks: Bottleneck Analysis and Fluid Approximations , 1991, Math. Oper. Res..

[17]  P. Dupuis,et al.  On Lipschitz continuity of the solution mapping to the Skorokhod problem , 1991 .

[18]  P. Dupuis,et al.  On oblique derivative problems for fully nonlinear second-order elliptic PDE’s on domains with corners , 1991 .

[19]  Ruth J. Williams,et al.  Reflected Brownian motion in a cone with radially homogeneous reflection field , 1991 .

[20]  Zhen-Qing Chen On reflected Dirichlet spaces , 1992 .

[21]  On the semimartingale representation of reflecting Brownian motion in a cusp , 1993 .

[22]  Zhen-Qing Chen On reflecting diffusion processes and Skorokhod decompositions , 1993 .

[23]  Reflecting Brownian motion in a cusp , 1993 .

[24]  R. J. Williams,et al.  Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant , 1993 .

[25]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[26]  A Skorohod-Type Lemma and a Decomposition of Reflected Brownian Motion , 1995 .

[27]  Ruth J. Williams Semimartingale reflecting Brownian motions in the orthant , 1995 .

[28]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[29]  Ruth J. Williams,et al.  Existence and Uniqueness of Semimartingale Reflecting Brownian Motions in Convex Polyhedrons , 1996 .

[30]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[31]  Kavita Ramanan,et al.  A Skorokhod Problem formulation and large deviation analysis of a processor sharing model , 1998, Queueing Syst. Theory Appl..

[32]  V. Burenkov Sobolev spaces on domains , 1998 .

[33]  P. Dupuis,et al.  Convex duality and the Skorokhod Problem. I , 1999 .

[34]  Kavita Ramanan,et al.  A Multiclass Feedback Queueing Network with a Regular Skorokhod Problem , 2000, Queueing Syst. Theory Appl..

[35]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[36]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[37]  M. Reiman,et al.  FLUID AND HEAVY TRAFFIC DIFFUSION LIMITS FOR A GENERALIZED PROCESSOR SHARING MODEL , 2003 .

[38]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[39]  J. K. Hunter,et al.  Measure Theory , 2007 .

[40]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[41]  M. Reiman,et al.  The heavy traffic limit of an unbalanced generalized processor sharing model. , 2008, 0801.3174.

[42]  O. Gaans Probability measures on metric spaces , 2022 .