Imaging live-cell dynamics and structure at the single-molecule level.

[1]  G. Temple The physical principles of the quantum theory , 1932 .

[2]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[3]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .

[4]  Total Internal Reflection Fluorescence Surface Sensors , 1987 .

[5]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[6]  C. J. Lewis,et al.  Cyanine Dye Labeling Reagents: Sulfoindocyanine Succinimidyl Esters. , 1993 .

[7]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[8]  R N Zare,et al.  Probing individual molecules with confocal fluorescence microscopy. , 1994, Science.

[9]  W. Webb,et al.  Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. , 1994, Biophysical journal.

[10]  E Gratton,et al.  Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. , 1995, Biophysical journal.

[11]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[12]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[13]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[15]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[16]  K. Murakami,et al.  Single-molecule imaging of RNA polymerase-DNA interactions in real time. , 1999, Biophysical journal.

[17]  R. Haugland,et al.  Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[18]  Toshio Yanagida,et al.  Single-molecule imaging of EGFR signalling on the surface of living cells , 2000, Nature Cell Biology.

[19]  T. Ha,et al.  Single-molecule fluorescence methods for the study of nucleic acids. , 2001, Current opinion in structural biology.

[20]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[21]  Alexandr Jonás,et al.  Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. , 2003, Optics letters.

[22]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[23]  Ram Dixit,et al.  Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. , 2003, The Plant journal : for cell and molecular biology.

[24]  G. Danuser,et al.  Two Distinct Actin Networks Drive the Protrusion of Migrating Cells , 2004, Science.

[25]  Akihiro Kusumi,et al.  Single-molecule imaging analysis of Ras activation in living cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[28]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[29]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[30]  Samara L. Reck-Peterson,et al.  Single-Molecule Analysis of Dynein Processivity and Stepping Behavior , 2006, Cell.

[31]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[32]  Petra Schwille,et al.  Practical guidelines for dual-color fluorescence cross-correlation spectroscopy , 2007, Nature Protocols.

[33]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[34]  Marcia Levitus,et al.  Measuring conformational dynamics: a new FCS-FRET approach. , 2007, The journal of physical chemistry. B.

[35]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[36]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[37]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[38]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[39]  Nam Ki Lee,et al.  Single-molecule approach to molecular biology in living bacterial cells. , 2008, Annual review of biophysics.

[40]  S. Ram,et al.  High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. , 2008, Biophysical journal.

[41]  Ronald T Raines,et al.  Bright ideas for chemical biology. , 2008, ACS chemical biology.

[42]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[43]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[44]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[45]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[46]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[47]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[48]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[49]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[50]  James E. Crowe,et al.  Single molecule–sensitive probes for imaging RNA in live cells , 2009, Nature Methods.

[51]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[52]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[53]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[54]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[55]  D. McEwen,et al.  Single Molecule Imaging Reveals Differences in Microtubule Track Selection Between Kinesin Motors , 2009, PLoS biology.

[56]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[57]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[58]  K. Weninger,et al.  Detecting the conformation of individual proteins in live cells , 2010, Nature Methods.

[59]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[60]  Peter Kohl,et al.  Temporal Pixel Multiplexing for simultaneous high-speed high-resolution imaging , 2010, Nature Methods.

[61]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[62]  Ulrich Kubitscheck,et al.  Light Sheet Microscopy for Single Molecule Tracking in Living Tissue , 2010, PloS one.

[63]  Zdenek Petrásek,et al.  Scanning FCS for the characterization of protein dynamics in live cells. , 2010, Methods in enzymology.

[64]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[65]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[66]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[67]  David W Piston,et al.  Fluorescent proteins at a glance , 2011, Journal of Cell Science.

[68]  Sebastian van de Linde,et al.  Live-cell dSTORM with SNAP-tag fusion proteins. , 2011, Nature methods.

[69]  Atsushi Miyawaki,et al.  Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. , 2011, Annual review of biochemistry.

[70]  A. Oijen Single-molecule approaches to characterizing kinetics of biomolecular interactions. , 2011 .

[71]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[72]  M. Gustafsson,et al.  Super-resolution 3D microscopy of live whole cells using structured illumination , 2011, Nature Methods.

[73]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[74]  Takashi R Sato,et al.  Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex , 2011, Proceedings of the National Academy of Sciences.

[75]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[76]  Daniel Choquet,et al.  Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions , 2012, Nature Cell Biology.

[77]  Harald F Hess,et al.  Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes , 2012, Proceedings of the National Academy of Sciences.

[78]  Alexander Y Katsov,et al.  fast multicolor 3 d imaging using aberration-corrected multifocus microscopy , 2012 .

[79]  M. Davidson,et al.  Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination , 2012, Proceedings of the National Academy of Sciences.

[80]  J. Sibarita,et al.  TNF-alpha alpha influences the lateral dynamics of TNF receptor I in living cells , 2012 .

[81]  Bernd Rieger,et al.  Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution , 2012, Journal of Cell Science.

[82]  Ignacio Izeddin,et al.  PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. , 2012, Optics express.

[83]  M. Davidson,et al.  Noninvasive Imaging beyond the Diffraction Limit of 3D Dynamics in Thickly Fluorescent Specimens , 2012, Cell.

[84]  S. Manley,et al.  Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging , 2012, Proceedings of the National Academy of Sciences.

[85]  B. Giepmans,et al.  Immunolabeling artifacts and the need for live-cell imaging , 2012, Nature Methods.

[86]  X. Zhuang,et al.  Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging , 2012 .

[87]  Yongdeng Zhang,et al.  Rational design of true monomeric and bright photoactivatable fluorescent proteins , 2012, Nature Methods.

[88]  G. Lord,et al.  Secretory Vesicles Are Preferentially Targeted to Areas of Low Molecular SNARE Density , 2012, PloS one.

[89]  Burak Okumus,et al.  Segregation of molecules at cell division reveals native protein localization , 2012, Nature Methods.

[90]  Daniel Choquet,et al.  TNF-α influences the lateral dynamics of TNF receptor I in living cells. , 2012, Biochimica et biophysica acta.

[91]  S. Hess,et al.  Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. , 2012, Angewandte Chemie.

[92]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[93]  Robert H Singer,et al.  Single-molecule analysis of gene expression using two-color RNA labeling in live yeast , 2012, Nature Methods.

[94]  Xiaowei Zhuang,et al.  Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging. , 2013, Cold Spring Harbor protocols.

[95]  Antoine Triller,et al.  Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking , 2013, Front. Cell. Neurosci..

[96]  J. Doudna,et al.  Biotechnology: Rewriting a genome , 2013, Nature.

[97]  Alexander Y Katsov,et al.  Fast and sensitive multi-color 3D imaging using aberration-corrected multi-focus microscopy , 2012, Nature Methods.

[98]  Rahul Roy,et al.  Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy , 2013, Proceedings of the National Academy of Sciences.

[99]  X. Fang,et al.  Single-molecule fluorescence imaging in living cells. , 2013, Annual review of physical chemistry.

[100]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[101]  N. Daigle,et al.  Nuclear Pore Scaffold Structure Analyzed by Super-Resolution Microscopy and Particle Averaging , 2013, Science.

[102]  M. O’Donnell,et al.  A solution to release twisted DNA during chromosome replication by coupled DNA polymerases , 2013, Nature.

[103]  X. Xie,et al.  Single Molecule Imaging of Transcription Factor Binding to DNA in Live Mammalian Cells , 2013, Nature Methods.

[104]  Ignacio Izeddin,et al.  Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells , 2013, Science.

[105]  J. Elf,et al.  Extracting intracellular diffusive states and transition rates from single-molecule tracking data , 2013, Nature Methods.

[106]  R. Blomley,et al.  Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells , 2013, Nature Communications.

[107]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[108]  Carla P. Guimarães,et al.  Site-specific N-terminal labeling of proteins using sortase-mediated reactions , 2013, Nature Protocols.

[109]  Liang Gao,et al.  3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy , 2014, Nature Protocols.

[110]  Na Ji,et al.  Multiplexed aberration measurement for deep tissue imaging in vivo , 2014, Nature Methods.

[111]  S. Hell,et al.  Fluorogenic probes for live-cell imaging of the cytoskeleton , 2014, Nature Methods.

[112]  J. McNally,et al.  Single molecule analysis of transcription factor binding at transcription sites in live cells , 2014, Nature Communications.

[113]  Prabuddha Sengupta,et al.  Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits , 2014, Science.

[114]  M. Dahan,et al.  Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus , 2014, eLife.

[115]  Daniel Choquet,et al.  Investigating AMPA Receptor Diffusion and Nanoscale Organization at Synapses with High-Density Single-Molecule Tracking Methods , 2014 .

[116]  Wesley R. Legant,et al.  Single-Molecule Dynamics of Enhanceosome Assembly in Embryonic Stem Cells , 2014, Cell.

[117]  Wesley R. Legant,et al.  3D imaging of Sox2 enhancer clusters in embryonic stem cells , 2014, eLife.

[118]  Alex D. Herbert,et al.  Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy , 2014, Nucleic acids research.

[119]  D. Milkie,et al.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes , 2014, Nature Methods.

[120]  Carsten Schultz,et al.  Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. , 2014, Angewandte Chemie.

[121]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[122]  Robert Tjian,et al.  Single-molecule tracking of the transcription cycle by sub-second RNA detection , 2014, eLife.

[123]  Ronald T. Raines,et al.  Bright Building Blocks for Chemical Biology , 2014, ACS chemical biology.

[124]  S. Stallinga,et al.  The lateral and axial localization uncertainty in super-resolution light microscopy. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[125]  A. Small,et al.  Fluorophore localization algorithms for super-resolution microscopy , 2014, Nature Methods.

[126]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[127]  Hiroshi Kimura,et al.  Regulation of RNA polymerase II activation by histone acetylation in single living cells , 2014, Nature.

[128]  V. Subramaniam,et al.  Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells. , 2014, Biophysical journal.

[129]  Mark H. Ellisman,et al.  Computational design of a red fluorophore ligase for site-specific protein labeling in living cells , 2014, Proceedings of the National Academy of Sciences.

[130]  Hernan G. Garcia,et al.  Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos , 2014, Proceedings of the National Academy of Sciences.

[131]  M. Bathe,et al.  Bayesian total internal reflection fluorescence correlation spectroscopy reveals hIAPP-induced plasma membrane domain organization in live cells. , 2014, Biophysical journal.

[132]  M. Bruchez,et al.  Localization microscopy using noncovalent fluorogen activation by genetically encoded fluorogen-activating proteins. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[133]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[134]  J. Langowski,et al.  Ligand Binding Shifts Highly Mobile Retinoid X Receptor to the Chromatin-Bound State in a Coactivator-Dependent Manner, as Revealed by Single-Cell Imaging , 2014, Molecular and Cellular Biology.

[135]  Steve Pressé,et al.  Stochastic approach to the molecular counting problem in superresolution microscopy , 2014, Proceedings of the National Academy of Sciences.

[136]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.