A Case for Using Plethodontid Salamanders for Monitoring Biodiversity and Ecosystem Integrity of North American Forests

: Terrestrial salamanders of the family Plethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV ) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodontids (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37–46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health. Resumen: Las salamandras terrestres de la familia Plethodontidae tienen atributos unicos que las hacen excelentes indicadores de la biodiversidad y la integridad del ecosistema en habitats forestales. Su longevidad, sus territorios de tamano pequeno, su fidelidad de sitio, su sensibilidad a las perturbaciones naturales y antropogenicas, su tendencia a ocurrir en densidades altas y los bajos costos de muestreo indican que los conteos de salamandras plethodontidas proveen numerosas ventajas sobre otros organismos de los bosques de Norteamerica para representar cambios ambientales. Ademas, estas salamandras estan estrechamente ligadas fisiologicamente a procesos microclimaticos y sucesionales que influencian las distribuciones y abundancias de otras especies de plantas y animales hidrofilicas que habitan los bosques, pero que son dificiles de estudiar. Los procesos de los ecosistemas tales como el ciclo de humedad, las dinamicas de la red alimenticia y la sucesion, con su variabilidad estructural y microclimatica inherente, afectan la biodiversidad forestal y ha sido demostrado que afectan tambien a las poblaciones de salamandras. Determinamos la variabilidad asociada con el muestreo de salamandras plethodontidas mediante la estimacion del coeficiente de variacion (CV ) a partir de datos accesibles de series de tiempo. La mediana del CV indico que la variacion en los conteos de individuos entre estudios fue mucho menor en plethodontidos (27%) que en lepidopteros (93%), aves paserinas (57%), mamiferos pequenos (69%) y otros anfibios (37–46%), lo cual significa que las salamandras plethodontidas proveen una importante ventaja estadistica sobre las otras especies para el monitoreo a largo plazo de la salud del bosque.

[1]  T. Spies,et al.  Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest , 1993 .

[2]  Richard L. Wallace,et al.  Distribution and Habitat of Plethodon elongatus on Managed, Young Growth Forests in North Coastal California , 1994 .

[3]  Eugene P. Odum,et al.  GREAT IDEAS IN ECOLOGY FOR THE 1990S , 1992 .

[4]  L. Fahrig,et al.  Conservation of fragmented populations , 1994 .

[5]  N. Hairston Species Packing in Desmognathus Salamanders: Experimental Demonstration of Predation and Competition , 1986, The American Naturalist.

[6]  R. L. Wallace,et al.  Field Observations of Courtship Behavior in Rocky Mountain Populations of Van Dyke's Salamander, Plethodon vandykei, with a Description of Its Spermatophore , 1987 .

[7]  H. Welsh,et al.  Stream amphibians as indicators of ecosystem stress: a case study from California's redwoods , 1998 .

[8]  Gene E. Likens,et al.  Salamander populations and biomass in the Hubbard Brook Experimental Forest, New Hampshire , 1975 .

[9]  Jiquan Chen,et al.  HARVESTING EFFECTS ON MICROCLIMATIC GRADIENTS FROM SMALL STREAMS TO UPLANDS IN WESTERN WASHINGTON , 1997 .

[10]  C. Barrows Roost Selection by Spotted Owls: An Adaptation to Heat Stress , 1981 .

[11]  D. Wake,et al.  Measuring gene flow among populations having high levels of genetic fragmentation. , 1984, Genetics.

[12]  J. Castilla,et al.  Challenges in the Quest for Keystones , 1996 .

[13]  B. Rathcke,et al.  Mechanisms of Reduced Trillium Recruitment along Edges of Old‐Growth Forest Fragments , 1999 .

[14]  H. Welsh,et al.  Relictual Amphibians and Old‐Growth Forests , 1990 .

[15]  R. Jaeger Plant Climbing by Salamanders: Periodic Availability of Plant-Dwelling Prey , 1978 .

[16]  D. Fraser Empirical Evaluation of the Hypothesis of Food Competition in Salamanders of the Genus Plethodon , 1976 .

[17]  R. Highton,et al.  Geographic Protein Variation and Speciation in Salamanders of the Plethodon Jordani and Plethodon Glutinosus Complexes in the Southern Appalachian Mountains with the Description of Four New Species , 2000 .

[18]  Gene E. Likens,et al.  Energy Flow and Nutrient Cycling in Salamander Populations in the Hubbard Brook Experimental Forest, New Hampshire , 1975 .

[19]  P. S. Corn,et al.  Terrestrial amphibian communities in the Oregon Coast Range , 1991 .

[20]  P. Gregory,et al.  Population structure, growth, and reproduction in a Vancouver Island population of the salamander Plethodon vehiculum , 1989 .

[21]  D. Wake,et al.  Amphibian Declines: Judging Stability, Persistence, and Susceptibility of Populations to Local and Global Extinctions , 1994 .

[22]  Hartwell H. Welsh,et al.  Population Ecology of two Relictual Salamanders from the Klamath Mountains of Northwestern California , 1992 .

[23]  C. Harper,et al.  Factors affecting salamander density and distribution within four forest types in the Southern Appalachian Mountains , 1999 .

[24]  Malcolm L. Hunter,et al.  The relationship between forest management and amphibian ecology: a review of the North American literature , 1995 .

[25]  M. Yamasaki,et al.  A nondestructive technique to monitor the relative abundance of terrestrial salamanders , 1992 .

[26]  R. Highton GEOGRAPHIC PROTEIN VARIATION AND SPECIATION IN THE SALAMANDERS OF THE PLETHODON CINEREUS GROUP WITH THE DESCRIPTION OF TWO NEW SPECIES , 1999 .

[27]  T. Caro,et al.  On the Use of Surrogate Species in Conservation Biology , 1999 .

[28]  Malcolm L. Hunter,et al.  Effects of Silvicultural Edges on the Distribution and Abundance of Amphibians in Maine , 1998 .

[29]  D. Simberloff Flagships, umbrellas, and keystones: Is single-species management passé in the landscape era? , 1998 .

[30]  R. Hobbs,et al.  Biological Consequences of Ecosystem Fragmentation: A Review , 1991 .

[31]  D. Wake Declining Amphibian Populations , 1991, Science.

[32]  N. Scott,et al.  Does the Sacramento Mountain salamander require old-growth forests? , 1992 .

[33]  M. Raphael,et al.  Long-term trends in abundance of amphibians, reptiles, and mammals in Douglas-fir forests of northwestern California , 1988 .

[34]  K. Buhlmann,et al.  Factors influencing amphibian and small mammal assemblages in central Appalachian forests , 1997 .

[35]  R. L. Wyman,et al.  Degree and Scale of Terrestrial Acidification and Amphibian Community Structure , 1992 .

[36]  P. S. Corn,et al.  Douglas-fir forests in the Oregon and Washington Cascades: relation of the herpetofauna to stand age and moisture , 1988 .

[37]  C. Haas,et al.  Effects of seven silvicultural treatments on terrestrial salamanders , 1999 .

[38]  N. Hairston Growth, Survival and Reproduction of Plethodon jordani: Trade-Offs between Selective Pressures , 1983 .

[39]  Jerry F. Franklin,et al.  Coarse Woody Debris in Douglas-Fir Forests of Western Oregon and Washington , 1988 .

[40]  J. Spotila Role of Temperature and Water in the Ecology of Lungless Salamanders , 1972 .

[41]  T. Spies,et al.  Vegetation Responses to Edge Environments in Old-Growth Douglas-Fir Forests. , 1992, Ecological applications : a publication of the Ecological Society of America.

[42]  L. Vitt,et al.  Amphibians as harbingers of decay , 1990 .

[43]  G. Mroz,et al.  Microclimate in Forest Ecosystem and Landscape Ecology , 1999 .

[44]  Andrew B. Carey,et al.  Wildlife and vegetation of unmanaged Douglas-Fir forests , 1991 .

[45]  W. Covington Changes in Forest Floor Organic Matter and Nutrient Content Following Clear Cutting in Northern Hardwoods , 1981 .

[46]  R. T. Brooks Residual effects of thinning and high white-tailed deer densities on northern redback salamanders in southern New England Oak Forests , 1999 .

[47]  David R. Larsen,et al.  Plethodontid Salamander Response to Silvicultural Practices in Missouri Ozark Forests , 1999 .

[48]  Michael Messere,et al.  Forest floor distribution of northern redback salamanders, Plethodon cinereus, in relation to canopy gaps: first year following selective logging , 1998 .

[49]  D. E. Scott,et al.  CHAPTER 9 – Structure and Dynamics of an Amphibian Community: Evidence from a 16-Year Study of a Natural Pond , 1996 .

[50]  R. Highton Speciation in Eastern North American Salamanders of the Genus Plethodon , 1995 .

[51]  N. Hairston,et al.  No Decline in Salamander (Amphibia: Caudata) Populations: A Twenty-Year Study in the Southern Appalachians , 1993 .

[52]  J. Karr Biological Integrity: A Long-Neglected Aspect of Water Resource Management. , 1991, Ecological applications : a publication of the Ecological Society of America.

[53]  R. Bruce 2nd World Congress of Herpetology , 1995 .

[54]  F. Taub The Distribution of the Red‐Backed Salamander, Plethodon C. Cinereus, within the Soil , 1961 .

[55]  D. Wake,et al.  Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? , 1996, The International journal of developmental biology.

[56]  T. Spies Plant species diversity and occurrence in young, mature, and old-growth Douglas-fir stands in western Oregon and Washington , 1991 .

[57]  J. Petranka,et al.  Effects of timber harvesting on low elevation populations of southern Appalachian salamanders , 1994 .

[58]  D. Wake Adaptive Radiation of Salamanders in Middle American Cloud Forests , 1987 .

[59]  J. Nichols,et al.  Statistical inference for capture-recapture experiments , 1992 .

[60]  Andrew N. Ash,et al.  Disappearance and Return of Plethodontid Salamanders to Clearcut Plots in the Southern Blue Ridge Mountains , 1997 .

[61]  H. Welsh,et al.  HABITAT CORRELATES OF THE DEL NORTE SALAMANDER, PLETHODON ELONGATUS (CAUDATA: PLETHODONTIDAE), IN NORTHWESTERN CALIFORNIA , 1995 .

[62]  B. B. Bingham,et al.  Distinctive features and definitions of young, mature, and old-growth Douglas-fir/hardwood forests , 1991 .

[63]  Fred L. Bunnell,et al.  Relation of Terrestrial‐Breeding Amphibian Abundance to Tree‐Stand Age , 1995 .

[64]  R. Lowrance,et al.  A conceptual model for assessing ecological risk to water quality function of bottomland hardwood forests , 1995 .

[65]  Frederick J. Swanson,et al.  CONSERVING BIODIVERSITY IN MANAGED FORESTS : LESSONS FROM NATURAL FORESTS , 1991 .

[66]  R. Jaeger,et al.  Field observations of the behavior of the red-backed salamander (Plethodon cinereus): courtship and agonistic interactions , 1990 .

[67]  R. Jaeger DENSITY‐DEPENDENT AND DENSITY‐INDEPENDENT CAUSES OF EXTINCTION OF A SALAMANDER POPULATION , 1980, Evolution; international journal of organic evolution.

[68]  James P. Gibbs,et al.  Monitoring populations of plants and animals , 1998 .