First ground-based measurement of sub-20 GeV to 100 GeV gamma-Rays from the Vela pulsar with HESS II

Aims. We report on the measurement and investigation of pulsed high-energy γ-ray emission from the Vela pulsar, PSR B0833−45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi-LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi-LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed γ-ray signal at a significance level of more than 15σ is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi-LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4σ significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Γ ≃ 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10–100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based γ-ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of γ-Ray emission from pulsars.

L. Oakes | T. Bulik | J. Tjus | U. Katz | P. O’Brien | E. Moulin | M. Seglar-Arroyo | A. Ziegler | D. Malyshev | D. Berge | T. Lohse | C. Deil | A. Quirrenbach | A. Donath | R. Tuffs | T. Takahashi | A. Seyffert | Z. Wadiasingh | C. V. Rensburg | C. Venter | T. Holch | R. Parsons | A. Mitchell | S. Ohm | H. Abdalla | C. Stegmann | I. Davids | J. Vink | W. Hofmann | S. Johnston | G. Fontaine | R. Schlickeiser | Michael Backes | V. Poireau | F. Aharonian | D. Horns | Y. Gallant | S. Fegan | K. Kosack | Y. Becherini | J. Ernenwein | D. Zaborov | A. Santangelo | L. Drury | G. Maurin | S. Gabici | S. Wagner | A. Chen | S. Colafrancesco | M. Bottcher | L. Mohrmann | B. Peyaud | D. Khangulyan | S. Nakashima | H. Odaka | S. Saito | L. Stawarz | Y. Uchiyama | B. V. Soelen | J. Tavernet | M. Panter | M. Katsuragawa | C. Boisson | J. Bolmont | P. Bordas | P. Brun | A. Carosi | S. Casanova | M. Cerruti | M. Naurois | J. Dyks | K. Egberts | A. Fiasson | G. Giavitto | J. Glicenstein | J. Hahn | G. Henri | G. Hermann | A. Jacholkowska | M. Jamrozy | N. Komin | G. Lamanna | J. Lenain | A. Marcowith | R. Moderski | J. Niemiec | M. Ostrowski | I. Oya | P. Petrucci | S. Pita | H. Prokoph | M. Punch | O. Reimer | M. Renaud | F. Rieger | B. Rudak | V. Sahakian | U. Schwanke | S. Schwemmer | H. Sol | F. Spanier | R. Steenkamp | R. Terrier | L. Tibaldo | M. Tluczykont | C. Eldik | G. Vasileiadis | P. Vincent | A. Wierzcholska | M. Zacharias | R. Zanin | A. Zdziarski | A. Zech | J. Bregeon | H. Volk | M. Kerr | R. Shannon | J. Devin | M. Lemoine-Goumard | B. Kh'elifi | A. Sinha | G. Rowell | H. Collaboration | G. Puhlhofer | F. Brun | M. Capasso | R. Chaves | A. Djannati-Atai | D. Gottschall | M. Sasaki | S. Bonnefoy | S. Klepser | R. L'opez-Coto | S. Funk | E. Ruiz-Velasco | C. Arcaro | A. Dmytriiev | M. Haupt | T. Murach | A. Specovius | F. Voisin | F. Benkhali | E. Anguner | M. Barnard | K. Bernlohr | M. Bryan | M. Buchele | S. Caroff | P. deWilt | L. Dirson | V. Doroshenko | G. Emery | M. Fussling | D. Glawion | M. Grondin | J. Hinton | C. Hoischen | M. Holler | D. Huber | D. Jankowsky | F. Jankowsky | I. Jung-Richardt | M. Kastendieck | K. Katarzy'nski | W. Klu'zniak | A. Lemière | I. Lypova | G. Mart'i-Devesa | R. Marx | P. Meintjes | M. Mohamed | H. Ndiyavala | F. Niederwanger | Q. Piel | A. Noel | D. Prokhorov | S. Raab | R. Rauth | L. Rinchiuso | C. Romoli | F. Schussler | M. Senniappan | N. Shafi | K. Shiningayamwe | R. Simoni | M. Spir-Jacob | C. Steppa | T. Tavernier | A. M. Taylor | D. Tiziani | C. Trichard | M. Tsirou | D. D. Walt | J. Veh | T. Vuillaume | J. Zorn | N. Żywucka | R. Blackwell | J. Lau | B. Condon | R. Wagner | G. Heinzelmann | M. Arakawa | M. Padovani | I. Shilon | M. Kraus | V. Mar | F. Gat'e | M. Arrieta | S. Bernhard | N. Chakraborty | S. Eschbach | L. Jouvin | D. Kerszberg | J. King | S. Krakau | P. Kruger | J. Lefaucheur | E. Leser | M. Lorentz | C. Mariaud | C. Perennes | R. Yang | F. Zefi | N. Tsuji | T. Bylund | H. Iwasaki | A. Reimer | D. Sanchez | A. Schulz | R. White | C. Arm | S. Ch | H. Iwasaki | A. Taylor | B. Soelen | P. Dewilt

[1]  L. A. Antonelli,et al.  Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes , 2016, 1603.00730.

[2]  India.,et al.  Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC , 2015, 1510.07048.

[3]  A. Harding,et al.  SYNCHROTRON SELF-COMPTON EMISSION FROM THE CRAB AND OTHER PULSARS , 2015, 1508.06251.

[4]  A. Harding,et al.  TESTING DISSIPATIVE MAGNETOSPHERE MODEL LIGHT CURVES AND SPECTRA WITH FERMI PULSARS , 2015, 1503.00744.

[5]  J. Pétri,et al.  Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds , 2015, 1501.07123.

[6]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[7]  Cambridge,et al.  A SEARCH FOR PULSATIONS FROM GEMINGA ABOVE 100 GeV WITH VERITAS , 2014, 1412.4734.

[8]  A. McCann A STACKED ANALYSIS OF 115 PULSARS OBSERVED BY THE FERMI LAT , 2014, 1412.2422.

[9]  A. Kong,et al.  FERMI-LAT DETECTION OF PULSED GAMMA-RAYS ABOVE 50 GeV FROM THE VELA PULSAR , 2014, 1410.5208.

[10]  K. Hirotani Does a strong particle accelerator arise very close to the light cylinder in a pulsar magnetosphere , 2014, 1403.7300.

[11]  L. A. Antonelli,et al.  Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes , 2014, 1402.4219.

[12]  R. Romani,et al.  THE VELA-X PULSAR WIND NEBULA REVISITED WITH FOUR YEARS OF FERMI LARGE AREA TELESCOPE OBSERVATIONS , 2013, 1307.5480.

[13]  I. Arka,et al.  Pulsed high energy gamma-rays from thermal populations in the current sheets of pulsar winds , 2012, 1208.2819.

[14]  T. Tanaka,et al.  FERMI-LAT AND WMAP OBSERVATIONS OF THE PUPPIS A SUPERNOVA REMNANT , 2012, 1210.4474.

[15]  Vlasios Vasileiou,et al.  THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION , 2012 .

[16]  F. Collaboration,et al.  The Fermi Large Area Telescope On Orbit: Event Classification, Instrument Response Functions, and Calibration , 2012, 1206.1896.

[17]  W. Bednarek On the origin of sub-TeV gamma-ray pulsed emission from rotating neutron stars , 2012, 1205.4855.

[18]  F. Aharonian,et al.  Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar , 2012, Nature.

[19]  W. Wang,et al.  RADIO-TO-TeV PHASE-RESOLVED EMISSION FROM THE CRAB PULSAR: THE ANNULAR GAP MODEL , 2012, 1202.1096.

[20]  Munchen,et al.  Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes , 2011, Astronomy & Astrophysics.

[21]  T. Tanaka,et al.  GAMMA-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT RX J0852.0−4622 WITH THE FERMI LARGE AREA TELESCOPE , 2011, 1109.4658.

[22]  T. Weekes,et al.  Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar , 2011, Science.

[23]  Vincent Marandon,et al.  A new analysis strategy for detection of faint γ-ray sources with Imaging Atmospheric Cherenkov Telescopes , 2011, 1104.5359.

[24]  K. Cheng,et al.  Three-dimensional two-layer outer gap model: Fermi energy-dependent light curves of the Vela pulsar , 2011, 1102.4474.

[25]  D. Thompson,et al.  PRECISE γ-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI γ-RAY PULSARS , 2010, 1011.2468.

[26]  H.-S. Zechlin,et al.  The Crab Nebula as a standard candle in very high-energy astrophysics , 2010, 1008.4524.

[27]  J. Chiang,et al.  Fermi Large Area Telescope observations of gamma-ray pulsars , 2011 .

[28]  J. Chiang,et al.  FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR , 2010, 1007.1142.

[29]  K. Cheng,et al.  GAMMA-RAY SPECTRAL PROPERTIES OF MATURE PULSARS: A TWO-LAYER MODEL , 2010, 1007.0609.

[30]  J. Chiang,et al.  THE VELA PULSAR: RESULTS FROM THE FIRST YEAR OF FERMI LAT OBSERVATIONS , 2010, 1002.4050.

[31]  et al,et al.  FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE CRAB PULSAR AND NEBULA , 2009, 0911.2412.

[32]  J. Chiang,et al.  FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR , 2008, 0812.2960.

[33]  M. Trifoglio,et al.  HIGH-RESOLUTION TIMING OBSERVATIONS OF SPIN-POWERED PULSARS WITH THE AGILE GAMMA-RAY TELESCOPE , 2008, 0810.1516.

[34]  K. Bernlohr,et al.  Simulation of Imaging Atmospheric Cherenkov Telescopes with CORSIKA and sim_telarray , 2008, 0808.2253.

[35]  E. al.,et al.  Observations of the Crab Nebula with H.E.S.S , 2006, astro-ph/0607333.

[36]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[37]  M. Tluczykont,et al.  Selection and 3D-Reconstruction of Gamma-Ray-induced Air Showers with a Stereoscopic System of Atmospheric Cherenkov Telescopes , 2006, astro-ph/0601373.

[38]  A. Noutsos,et al.  Search for pulsed VHE gamma-ray emission from young pulsars with HESS , 2005, astro-ph/0507388.

[39]  S. Funk,et al.  The trigger system of the H.E.S.S. telescope array , 2004 .

[40]  A. Harding,et al.  High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps , 2004, astro-ph/0402462.

[41]  J. Dyks,et al.  Relativistic Effects and Polarization in Three High-Energy Pulsar Models , 2004, astro-ph/0401255.

[42]  Extended acceleration in slot gaps and pulsar high-energy emission , 2003, astro-ph/0301023.

[43]  C. Renault,et al.  Temporal and spectral gamma-ray properties of Mkn 421 above 250 GeV from CAT observations between 1996 and 2000 , 2001, astro-ph/0106196.

[44]  Ti-Pei Li,et al.  Analysis methods for results in gamma-ray astronomy , 1983 .

[45]  D. Thompson,et al.  SAS-2 high-energy gamma-ray observations of the Vela pulsar , 1975 .