Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage

Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.

[1]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[2]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[3]  Tobin J Marks,et al.  Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[4]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[5]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[6]  Michael Grätzel,et al.  The rapid evolution of highly efficient perovskite solar cells , 2017 .

[7]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[8]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[9]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[10]  M. Johnston,et al.  Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH3NH3SnI3 Perovskite. , 2016, The journal of physical chemistry letters.

[11]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[12]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[13]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[14]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[15]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[16]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[17]  Ziran Zhao,et al.  50% Sn‐Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6% , 2016 .

[18]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[19]  Ajay Ram Srimath Kandada,et al.  Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors , 2016 .

[20]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[21]  H. Hillhouse,et al.  Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI3 to MAPbI2Br Using Composition Spread Libraries , 2016 .

[22]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[23]  C. Brabec,et al.  Exploring the Limiting Open‐Circuit Voltage and the Voltage Loss Mechanism in Planar CH3NH3PbBr3 Perovskite Solar Cells , 2016 .

[24]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[25]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[26]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[27]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[28]  A. Jen,et al.  Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. , 2016, Nano letters.

[29]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[30]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[31]  Zaifang Li,et al.  A two-terminal perovskite/perovskite tandem solar cell , 2016 .

[32]  H. Beere,et al.  High Open‐Circuit Voltages in Tin‐Rich Low‐Bandgap Perovskite‐Based Planar Heterojunction Photovoltaics , 2017, Advanced materials.

[33]  M. Kanatzidis,et al.  Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3. , 2015, The journal of physical chemistry letters.

[34]  Supratik Guha,et al.  Monolithic Perovskite‐CIGS Tandem Solar Cells via In Situ Band Gap Engineering , 2015 .

[35]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[36]  Nripan Mathews,et al.  Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. , 2016, Accounts of chemical research.

[37]  A. Zaban,et al.  Open circuit potential build-up in perovskite solar cells from dark conditions to 1 sun. , 2015, The journal of physical chemistry letters.

[38]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[39]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[40]  Wei Zhang,et al.  Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells , 2016 .

[41]  L. Schmidt‐Mende,et al.  Organic and Hybrid Solar Cells: An Introduction , 2016 .

[42]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[43]  M. Lonergan,et al.  Defect states in perovskite solar cells associated with hysteresis and performance , 2016 .

[44]  Michael Saliba,et al.  Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination , 2016 .

[45]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[46]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[47]  T. Emrick,et al.  High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. , 2016, ACS applied materials & interfaces.

[48]  D. Ginger,et al.  Anticorrelation between Local Photoluminescence and Photocurrent Suggests Variability in Contact to Active Layer in Perovskite Solar Cells. , 2016, ACS nano.

[49]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[50]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[51]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[52]  M. Wasielewski,et al.  Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. , 2016, Journal of the American Chemical Society.