The DEA and Intuitionistic Fuzzy TOPSIS Approach to Departments' Performances: A Pilot Study

This paper processes a unification of Fuzzy TOPSIS and Data Envelopment Analysis (DEA) to select the units with most efficiency. This research is a two-stage model designed to fully rank the organizational alternatives, where each alternative has multiple inputs and outputs. First, the alternative evaluation problem is formulated by Data Envelopment Analysis (DEA) and separately formulates each pair of units. In the second stage, we use the opinion of experts to be applied into a model of group Decision-Making (DM) called the Intuitionistic Fuzzy TOPSIS (IFT) method. The results of both methods are then multiplied to obtain the results. DEA and Intuitionistic Fuzzy TOPSIS ranking do not replace the DEA classification model; rather, it furthers the analysis by providing full ranking in the DEA context for all units by aggregate individual opinions of decision makers for rating the importance of criteria and alternatives.

[1]  John E. Beasley,et al.  Comparing university departments , 1990 .

[2]  William W. Cooper,et al.  Evaluation of Educational Program Proposals by Means of DEA , 1983 .

[3]  Miin-Shen Yang,et al.  Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance , 2004, Pattern Recognit. Lett..

[4]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[5]  Ronald R. Yager,et al.  Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making , 2005, Int. J. Syst. Sci..

[6]  Chengyi Zhang,et al.  Similarity measures on three kinds of fuzzy sets , 2006, Pattern Recognit. Lett..

[7]  Yaakov Roll,et al.  Incorporating Standards via DEA , 1994 .

[8]  Chen Li,et al.  Distances between interval-valued fuzzy sets , 2009, NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society.

[9]  Ranjit Biswas,et al.  An application of intuitionistic fuzzy sets in medical diagnosis , 2001, Fuzzy Sets Syst..

[10]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[11]  Zeshui Xu,et al.  Dynamic intuitionistic fuzzy multi-attribute decision making , 2008, Int. J. Approx. Reason..

[12]  K. Arrow Higher education as a filter , 1973 .

[13]  Ping Wang,et al.  QoS-aware web services selection with intuitionistic fuzzy set under consumer's vague perception , 2009, Expert Syst. Appl..

[14]  Janusz Kacprzyk,et al.  Using intuitionistic fuzzy sets in group decision making , 2002 .

[15]  Pekka Korhonen,et al.  A value efficiency approach to incorporating preference information in data envelopment analysis [management performance analysis] , 1997, Innovation in Technology Management. The Key to Global Leadership. PICMET '97.

[16]  J. Wallenius,et al.  A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis , 1999 .

[17]  Jill Johnes,et al.  Research Funding and Performance in U.K. University Departments of Economics: A Frontier Analysis. , 1995 .

[18]  Janusz Kacprzyk,et al.  A consensus‐reaching process under intuitionistic fuzzy preference relations , 2003, Int. J. Intell. Syst..

[19]  Muhittin Oral,et al.  A methodology for collective evaluation and selection of industrial R&D projects , 1991 .

[20]  Janusz Kacprzyk,et al.  A Similarity Measure for Intuitionistic Fuzzy Sets and Its Application in Supporting Medical Diagnostic Reasoning , 2004, ICAISC.

[21]  Diyar Akay,et al.  A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method , 2009, Expert Syst. Appl..

[22]  Weiqiong Wang,et al.  Distance measure between intuitionistic fuzzy sets , 2005, Pattern Recognit. Lett..

[23]  Zilla Sinuany-Stern,et al.  An AHP/DEA methodology for ranking decision making units , 2000 .

[24]  Zhen Zhou,et al.  Similarity Measures on Intuitionistic Fuzzy Sets , 2007, FSKD.

[25]  Lawrence M. Seiford,et al.  Prioritization models for frontier decision making units in DEA , 1992 .

[26]  R. Green,et al.  AN EXPERIMENT IN THE USE OF DATA ENVELOPMENT ANALYSIS FOR EVALUATING THE EFFICIENCY OF UK UNIVERSITY DEPARTMENTS OF ACCOUNTING , 1988 .

[27]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[28]  Zilla Sinuany-Stern,et al.  DEA and the discriminant analysis of ratios for ranking units , 1998, Eur. J. Oper. Res..

[29]  Zilla Sinuany-Stern,et al.  Scaling units via the canonical correlation analysis in the DEA context , 1997, Eur. J. Oper. Res..

[30]  Karl-Heinz Leitner,et al.  The impact of size and specialisation on universities’ department performance: A DEA analysis applied to Austrian universities , 2007 .

[31]  W. Cook,et al.  Preference voting and project ranking using DEA and cross-evaluation , 1996 .

[32]  Zilla Sinuany-Stern,et al.  Review of ranking methods in the data envelopment analysis context , 2002, Eur. J. Oper. Res..

[33]  Zeshui Xu,et al.  Intuitionistic preference relations and their application in group decision making , 2007, Inf. Sci..

[34]  Z. S. Xu,et al.  Models for Multiple Attribute Decision Making with Intuitionistic Fuzzy Information , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  F. E. Boran An Integrated Intuitionistic Fuzzy Multi Criteria Decision Making Method for Facility Location Selection , 2011 .

[36]  Janusz Kacprzyk,et al.  Intuitionistic Fuzzy Sets in some Medical Applications , 2001, Fuzzy Days.

[37]  Zilla Sinuany-Stern,et al.  Academic departments efficiency via DEA , 1994, Comput. Oper. Res..

[38]  J. Cubbin,et al.  Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis , 1992 .

[39]  Babak Daneshvar Rouyendegh,et al.  The DEA - FUZZY ANP Department Ranking Model Applied in Iran Amirkabir University , 2010 .

[40]  Zeshui Xu,et al.  Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making , 2007, Fuzzy Optim. Decis. Mak..

[41]  F. H. Saljooghi,et al.  The Measurement of Productivity Growth in the Academic Departments using Malmquist Productivity Index , 2010 .

[42]  J. S. H. Kornbluth,et al.  Analysing Policy Effectiveness Using Cone Restricted Data Envelopment Analysis , 1991 .

[43]  Boaz Golany,et al.  An Interactive MOLP Procedure for the Extension of DEA to Effectiveness Analysis , 1988 .

[44]  Michael Norman,et al.  Data Envelopment Analysis: The Assessment of Performance , 1991 .

[45]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[46]  Dug Hun Hong,et al.  Multicriteria fuzzy decision-making problems based on vague set theory , 2000, Fuzzy Sets Syst..

[47]  Ioannis K. Vlachos,et al.  Intuitionistic fuzzy information - Applications to pattern recognition , 2007, Pattern Recognit. Lett..

[48]  Li Dengfeng,et al.  New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions , 2002, Pattern Recognit. Lett..

[49]  Dengfeng Li,et al.  New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions , 2002, Pattern Recognit. Lett..

[50]  W. Cook,et al.  A data envelopment model for aggregating preference rankings , 1990 .

[51]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[52]  William W. Cooper,et al.  Handbook on data envelopment analysis , 2011 .

[53]  Diyar Akay,et al.  Personnel selection based on intuitionistic fuzzy sets , 2011 .

[54]  Fatih Emre Boran,et al.  The Evaluation of Renewable Energy Technologies for Electricity Generation in Turkey Using Intuitionistic Fuzzy TOPSIS , 2012 .