Combinatorial and hypergeometric identities via the Legendre polynomials--A computational approach
暂无分享,去创建一个
[2] Samuel D. Conte,et al. Elementary Numerical Analysis: An Algorithmic Approach , 1975 .
[3] O. Renault,et al. A new algorithm for computing orthogonal polynomials , 1996 .
[4] M. Ismail. More on Electrostatic Models for Zeros of Orthagonal Polynomials , 2000 .
[5] Bernd Fischer,et al. Wavelets based on orthogonal polynomials , 1997, Math. Comput..
[6] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[7] Finite Differences and Orthogonal Polynomials , 1999 .
[8] Alexander D. Poularikas,et al. The handbook of formulas and tables for signal processing , 1998 .
[9] José E. Moreira,et al. Hypergeometric Functions in Exact Geometric Computation , 2002, CCA.
[10] Moawwad E. A. El-Mikkawy,et al. Extended symmetric Pascal matrices via hypergeometric functions , 2004, Appl. Math. Comput..
[11] Analysis of random walks using orthogonal polynomials , 1998 .
[12] Vladimir S. Chelyshkov,et al. Alternative orthogonal polynomials and quadratures. , 2006 .
[13] A Certain Series Associated with Catalan’s Constant , 2002 .