Robot gait synthesis using the scheme of human motions skills development

This work presents biologically inspired method of gait generation. Referring to the periodic signals generated by biological CPG, the coupled oscillators with correction functions are used to produce leg joint trajectories. The method of oscillators parameters evaluation using genetic algorithm is described. The correction functions are introduced. The gait formula suitable for real-time motion generation taking into account the positioning errors is given. Generated gait can be used as the basis for modifications to produce more complex motions. The problem of suitability of human gait for bipeds with body proportions different than that in human body is discussed.

[1]  Hartmut Witte,et al.  Evolution of Vertebrate Locomotory Systems , 2004 .

[2]  Thomas Kindermann,et al.  Walknet--a biologically inspired network to control six-legged walking , 1998, Neural Networks.

[3]  S. Rossignol,et al.  Neural Control of Rhythmic Movements in Vertebrates , 1988 .

[4]  Ulrich Bässler,et al.  The walking-(and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators , 1993, Biological Cybernetics.

[5]  Chien-Ping Lu,et al.  Neural organization of the locomotive oscillator , 1993, Biological Cybernetics.

[6]  Teresa Zielinska,et al.  Biologically Inspired Motion Planning in Robotics , 2006 .

[7]  J. J. Collins,et al.  Hard-wired central pattern generators for quadrupedal locomotion , 1994, Biological Cybernetics.

[8]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[9]  Serge Rossignol,et al.  Experiments and models of sensorimotor interactions during locomotion , 2006, Biological Cybernetics.

[10]  H. Hemami,et al.  Modeling of a Neural Pattern Generator with Coupled nonlinear Oscillators , 1987, IEEE Transactions on Biomedical Engineering.

[11]  Teresa Zielinska Biological Aspects of Locomotion , 2004 .

[12]  J. Morimoto,et al.  A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a Coupled Oscillator Model , 2008, IEEE Transactions on Robotics.

[13]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[14]  Uwe Müller-Wilm,et al.  A neuron-like network with the ability to learn coordinated movement patterns , 1993, Biological Cybernetics.

[15]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[16]  Hiroshi Shimizu,et al.  Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment , 1991, Biological Cybernetics.

[17]  Christopher L. Vaughan,et al.  Dynamics of human gait , 1992 .

[18]  Przemyslaw Kryczka,et al.  THE DESIGN OF A HUMANOIDAL BIPED FOR THE RESEARCH ON THE GAIT PATTERN GENERATORS , 2007 .

[19]  Holk Cruse,et al.  The functional sense of central oscillations in walking , 2002, Biological Cybernetics.

[20]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[21]  Chee-Meng Chew,et al.  Dynamic bipedal walking assisted by learning , 2002, Robotica.

[22]  Ulises Cortés,et al.  Weighting quantitative and qualitative variables in clustering methods , 1997 .

[23]  J. J. Collins,et al.  Hexapodal gaits and coupled nonlinear oscillator models , 1993, Biological Cybernetics.

[24]  Martijn Wisse,et al.  Passive-Based Walking Robot , 2007, IEEE Robotics & Automation Magazine.

[25]  J. J. Collins,et al.  A group-theoretic approach to rings of coupled biological oscillators , 1994, Biological Cybernetics.

[26]  Alexander Kaske,et al.  Emergence of coherent traveling waves controlling quadruped gaits in a two-dimensional spinal cord model , 2003, Biological Cybernetics.

[27]  Ludovic Righetti,et al.  Engineering entrainment and adaptation in limit cycle systems , 2006, Biological Cybernetics.

[28]  F. Plum Handbook of Physiology. , 1960 .

[29]  Max Suell Dutra,et al.  Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol , 2003, Biological Cybernetics.

[30]  Joseph Ayers,et al.  Oscillations and oscillatory behavior in small neural circuits , 2006, Biological Cybernetics.

[31]  E. Blum Numerical analysis and computation theory and practice , 1972 .

[32]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[33]  Paolo Arena,et al.  The Central Pattern Generator: a paradigm for artificial locomotion , 2000, Soft Comput..

[34]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[35]  Hiroshi Shimizu,et al.  A self-organizing model of walking patterns of insects , 1993, Biological Cybernetics.

[36]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[37]  Teresa Zielińska Coupled oscillators utilised as gait rhythm generators of a two-legged walking machine , 2004, Biological Cybernetics.

[38]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[39]  Kiyotoshi Matsuoka,et al.  Sustained oscillations generated by mutually inhibiting neurons with adaptation , 1985, Biological Cybernetics.

[40]  R. Brand,et al.  The biomechanics and motor control of human gait: Normal, elderly, and pathological , 1992 .