Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula

ABSTRACT Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.

[1]  Y. Konishi,et al.  Kinetics of the Bioleaching of Chalcopyrite Concentrate by Acidophilic Thermophile Acidianus brierleyi , 1999, Biotechnology progress.

[2]  A. Rosenzweig,et al.  Structure and interactions of the C‐terminal metal binding domain of Archaeoglobus fulgidus CopA , 2010, Proteins.

[3]  C. Sensen,et al.  High Spontaneous Mutation Rate in the Hyperthermophilic Archaeon Sulfolobus solfataricus Is Mediated by Transposable Elements , 2000, Journal of bacteriology.

[4]  G. Fuchs,et al.  A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea , 2007, Science.

[5]  J. Mobarec,et al.  Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. , 2010, Biotechnology advances.

[6]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[7]  T. Beveridge,et al.  Methods for general and molecular microbiology , 2007 .

[8]  A. McEwan,et al.  Visualisation of pyrite leaching by selected thermophilic archaea: Nature of microorganism–ore interactions during bioleaching , 2007 .

[9]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[10]  A. Orell,et al.  Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. , 2006, Microbiology.

[11]  P. Blum,et al.  The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon Metallosphaera sedula Provides Insights into Bioleaching-Associated Metabolism , 2007, Applied and Environmental Microbiology.

[12]  D. Rawlings,et al.  Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates , 2005, Microbial cell factories.

[13]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[14]  D. Holmes,et al.  Draft Genome Sequence of the Extremely Acidophilic Biomining Bacterium Acidithiobacillus thiooxidans ATCC 19377 Provides Insights into the Evolution of the Acidithiobacillus Genus , 2011, Journal of bacteriology.

[15]  P. Blum,et al.  Targeted Disruption of the α-Amylase Gene in the Hyperthermophilic Archaeon Sulfolobus solfataricus , 2003 .

[16]  M. B. Allen Studies with cyanidium caldarium, an anomalously pigmented chlorophyte , 2004, Archiv für Mikrobiologie.

[17]  P. Blum,et al.  Regulation of Mercury Resistance in the Crenarchaeote Sulfolobus solfataricus , 2006, Journal of bacteriology.

[18]  K. R. Long,et al.  Database of significant deposits of gold, silver, copper, lead, and zinc in the United States , 1998 .

[19]  Thijs J G Ettema,et al.  TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. , 2003, Trends in biochemical sciences.

[20]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[21]  P. Blum,et al.  Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus. , 2002, RNA.

[22]  Shengyue Wang,et al.  Complete Genome Sequence of Metallosphaera cuprina, a Metal Sulfide-Oxidizing Archaeon from a Hot Spring , 2011, Journal of bacteriology.

[23]  P. Blum,et al.  The Role of cis-acting Sequences Governing Catabolite Repression Control of lacS Expression in the Archaeon Sulfolobus solfataricus , 2004, Genetics.

[24]  P. Blum,et al.  Engineering thermoacidophilic archaea using linear DNA recombination. , 2011, Methods in molecular biology.

[25]  A. Scheidig,et al.  Expression, Isolation, and Crystallization of the Catalytic Domain of CopB, a Putative Copper Transporting ATPase from the Thermoacidophilic Archaeon Sulfolobus solfataricus , 2004, Journal of Bioenergetics and Biomembranes.

[26]  J. Argüello,et al.  Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites , 2008, Proceedings of the National Academy of Sciences.

[27]  T. Oshima,et al.  Positive selection for uracil auxotrophs of the sulfur-dependent thermophilic archaebacterium Sulfolobus acidocaldarius by use of 5-fluoroorotic acid , 1991, Journal of bacteriology.

[28]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[29]  R. Gunsalus,et al.  Sulfolobus acidocaldarius synthesizes UMP via a standard de novo pathway: results of biochemical-genetic study , 1993, Journal of bacteriology.

[30]  I. Suzuki,et al.  Microbial leaching of metals from sulfide minerals. , 2001, Biotechnology advances.

[31]  M. Hajduch,et al.  A Systematic Proteomic Study of Seed Filling in Soybean. Establishment of High-Resolution Two-Dimensional Reference Maps, Expression Profiles, and an Interactive Proteome Database1[w] , 2005, Plant Physiology.

[32]  Shuangjiang Liu,et al.  Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. , 2011, International journal of systematic and evolutionary microbiology.

[33]  P. Blum,et al.  Bacterial Growth State Distinguished by Single-Cell Protein Profiling: Does Chlorination Kill Coliforms in Municipal Effluent? , 1999, Applied and Environmental Microbiology.

[34]  A. McEwan,et al.  Respiratory gene clusters of Metallosphaera sedula - differential expression and transcriptional organization. , 2005, Microbiology.

[35]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[36]  R. Kelly,et al.  Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. , 2008, Current opinion in biotechnology.

[37]  Han,et al.  Biooxidation capacity of the extremely thermoacidophilic archaeon metallosphaera sedula under bioenergetic challenge , 1998, Biotechnology and bioengineering.

[38]  M. Weiß,et al.  Identification of Missing Genes and Enzymes for Autotrophic Carbon Fixation in Crenarchaeota , 2010, Journal of bacteriology.

[39]  Thijs J. G. Ettema,et al.  Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. , 2006, Microbiology.

[40]  R. Kelly,et al.  Physiological Versatility of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Supported by Transcriptomic Analysis of Heterotrophic, Autotrophic, and Mixotrophic Growth , 2009, Applied and Environmental Microbiology.

[41]  D. Rawlings,et al.  Heavy metal mining using microbes. , 2002, Annual review of microbiology.

[42]  P. Blum,et al.  VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. , 2011, RNA.

[43]  G. Olson,et al.  Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. , 2003, Applied microbiology and biotechnology.

[44]  S. Albers,et al.  Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea , 2007, Nucleic acids research.

[45]  S. Albers,et al.  The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus. , 2012, Microbiology.

[46]  P. Blum,et al.  Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. , 2003, Journal of bacteriology.

[47]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[48]  P. Blum,et al.  CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. , 2011, Microbiology.