Applications of Optically Generated Terahertz Pulses to Time Domain Ranging and Scattering

This chapter focuses on the use of THz time-domain techniques for the measurement of time-resolved electromagnetic scattering. Electromagnetic scattering is a vast field owing to its application in a wide range of measurement techniques in addition to commercial and military radar. The vast majority of treatments look at scattering in the frequency domain. Owing to the high bandwidth, the phase coherence, and our ability to directly measure the electromagnetic field with subpicosecond resolution, optically generated THzbandwidth pulses provide a valuable new method to investigate fundamental scattering mechanisms. This introductory section provides a brief background on electromagnetic scattering, and attempts to provide a perspective on the application of THz time-domain techniques in this broad field.

[1]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy of water vapor. , 1989, Optics letters.

[2]  H. Winful,et al.  Gouy shift and temporal reshaping of focused single-cycle electromagnetic pulses: errata. , 1998, Optics letters.

[3]  E. Kennaugh,et al.  Transient and impulse response approximations , 1965 .

[4]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[5]  Steffan Abrahamson,et al.  Transient interactions of an EM pulse with a dielectric spherical shell , 1994 .

[6]  L. Peters,et al.  A modified geometrical optics method for scattering by dielectric bodies , 1963 .

[7]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[8]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[9]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[10]  M. A. Morgan,et al.  Ultra-wide-band transient electromagnetic scattering laboratory , 1991 .

[11]  G. Sinclair,et al.  Measurement of Aircraft-Antenna Patterns Using Models , 1947, Proceedings of the IRE.

[12]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  L. E. Larsen,et al.  Medical Applications of Microwave Imaging , 1986 .

[15]  Samuel D. Gasster,et al.  Foreign-gas collision broadening of the far-infrared spectrum of water vapor , 1988 .

[16]  M. J. Gans,et al.  Cross polarization in reflector-type beam waveguides and antennas , 1976, The Bell System Technical Journal.

[17]  P. Jepsen,et al.  Radiation patterns from lens-coupled terahertz antennas. , 1995, Optics letters.

[18]  L. Carin,et al.  Ultra-wideband transient microwave scattering measurements using optoelectronically switched antennas , 1993 .

[19]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[20]  J. Lesurf Millimetre-wave optics, devices, and systems , 1990 .

[21]  Richard Alan Cheville,et al.  Late-time target response measured with terahertz impulse ranging , 1997 .

[22]  Richard Alan Cheville,et al.  Time domain terahertz impulse ranging studies , 1995 .

[23]  Short‐pulse scattering measurements from dielectric spheres using photoconductively switched antennas , 1993 .

[24]  A. M. Morgan Ultra-wideband impulse scattering measurements , 1994 .

[25]  Richard Alan Cheville,et al.  Direct observation of the Gouy phase shift in THz impulse ranging , 2000 .

[26]  B. Brusmark,et al.  Scattering of short EM-pulses by simple and complex targets in the combined time-frequency domain using impulse radar , 1993, The Record of the 1993 IEEE National Radar Conference.

[27]  Daniel R. Grischkowsky,et al.  TIME RESOLVED MEASUREMENTS WHICH ISOLATE THE MECHANISMS RESPONSIBLE FOR TERAHERTZ GLORY SCATTERING FROM DIELECTRIC SPHERES , 1998 .

[28]  M. O. White Radar cross-section : measurement, prediction and control , 1998 .

[29]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[30]  C. R. Schumacher Electrodynamic similitude and physical scale modeling of nondispersive targets , 1987 .

[31]  Picosecond time-domain electromagnetic scattering from conducting cylinders , 1991, IEEE Microwave and Guided Wave Letters.

[32]  E. Kennaugh,et al.  The use of impulse response in electromagnetic scattering problems , 1958 .

[33]  H. Nussenzveig,et al.  The Theory of the Glory , 1977 .

[34]  E. Miller,et al.  Direct time-domain techniques for transient radiation and scattering from wires , 1980, Proceedings of the IEEE.

[35]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[36]  D. Wehner High Resolution Radar , 1987 .

[37]  Robert Buderi,et al.  The invention that changed the world : how a small group of radar pioneers won the Second World War and launched a technological revolution , 1997 .

[38]  Daniel R. Grischkowsky,et al.  Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal‐semiconductor interface , 1991 .

[39]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[40]  D. Lynch,et al.  Ulloa's observations of the glory, fogbow, and an unidentified phenomenon. , 1991, Applied optics.

[41]  R. Jacobsen,et al.  Generation and detection of terahertz pulses from biased semiconductor antennas , 1996 .

[42]  R. Johnson,et al.  Compact range techniques and measurements , 1969 .

[43]  L. Carin,et al.  PHOTOCONDUCTIVELY SWITCHED ANTENNAS FOR MEASURING TARGET RESONANCES , 1994 .

[44]  Daniel R. Grischkowsky,et al.  Characterization of an optoelectronic terahertz beam system , 1990 .

[45]  Daniel R. Grischkowsky,et al.  Limits and applications of THz time-domain spectroscopy , 1995, Optics & Photonics.

[46]  Nicholas C. Currie,et al.  Techniques of radar reflectivity measurement , 1984 .

[47]  Transient Scattering Measurements Using Photoconductively Switched Planar Antennas , 1993 .

[48]  W. Robertson,et al.  Microwave diffraction and interference in reflection using transient radiation from optoelectronically pulsed antennas , 1990 .

[49]  Stephen E. Ralph,et al.  Trap‐enhanced electric fields in semi‐insulators: The role of electrical and optical carrier injection , 1991 .