Meyer Type Wavelet Bases in R2

It is shown that for any expansive, integer valued 2×2 matrix, there exists a (multi-)wavelet whose Fourier transform is compactly supported and smooth. A key step is showing that for almost every equivalence class of integrally similar matrices there is a representative A which is strictly expansive in the sense that there is a compact set K which tiles the plane by integer translations and such that K?A(K°), where K° is the interior of K.

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[2]  Marcin Bownik,et al.  Tight frames of multidimensional wavelets , 1997 .

[3]  Guido Weiss,et al.  Smoothing minimally supported frequency wavelets: Part II , 1997 .

[4]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[5]  C. LagariasAT Corrigendum and Addendum to: Haar Bases for L2(Rn) and Algebraic Number Theory , 1998 .

[6]  Xiang Fang,et al.  Construction of Minimaly Supported Frequency Wavelets. , 1995 .

[7]  Jeffrey C. Lagarias,et al.  Corrigendum and Addendum to: Haar Bases for L^2(R^n) and Algebraic Number Theory , 1998 .

[8]  A. Calogero Wavelets on general lattices, associated with general expanding maps of ⁿ , 1999 .

[9]  Y. Meyer Wavelets and Operators , 1993 .

[10]  Christoph Bandt,et al.  Classification of Self-Affine Lattice Tilings , 1994 .

[11]  D. Larson,et al.  Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .

[12]  Yang Wang,et al.  Arbitrarily smooth orthogonal nonseparable wavelets in R 2 , 1999 .

[13]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[14]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[15]  Marcin Bownik The construction ofr-regular wavelets for arbitrary dilations , 2001 .

[16]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[17]  Jeffrey C. Lagarias,et al.  Haar Bases for L 2 (R n ) and Algebraic Number Theory , 1996 .

[18]  Ding-Xuan Zhou,et al.  Self-Similar Lattice Tilings and Subdivision Schemes , 2001, SIAM J. Math. Anal..

[19]  David R. Larson,et al.  Wavelet sets in ℝn , 1997 .

[20]  Paolo M. Soardi,et al.  Single wavelets in n-dimensions , 1998 .

[21]  Marcin Bownik,et al.  A Characterization of Dimension Functions of Wavelets , 2001 .

[22]  Jeffrey C. Lagarias,et al.  Haar Bases forL2(Rn) and Algebraic Number Theory , 1996 .

[23]  W. Szlenk,et al.  An introduction to the theory of smooth dynamical systems , 1984 .

[24]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[25]  J. Lagarias,et al.  Integral self-affine tiles in ℝn part II: Lattice tilings , 1997 .

[26]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[27]  Ka-Sing Lau,et al.  Classification of Integral Expanding Matrices and Self-Affine Tiles , 2002, Discret. Comput. Geom..

[28]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[29]  Yang Wang INTEGRAL SELF-AFFINE TILES IN Rn II. LATTICE TILINGS , 1998 .

[30]  John J. Benedetto,et al.  The Construction of Multiple Dyadic Minimally Supported Frequency Wavelets on , 1999 .

[31]  L. Baggett,et al.  ABSTRACT HARMONIC ANALYSIS AND WAVELETS IN R , 2003 .

[32]  Jeffrey C. Lagarias,et al.  Haar Type Orthonormal Wavelet Bases in R2 , 1995 .

[33]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[34]  Antoine Ayache Construction of non separable dyadic compactly supported orthonormal wavelet bases for L2(R2) of arbitrarily high regularity , 1999 .

[35]  Qing Gu,et al.  On multiresolution analysis (MRA) wavelets in ℝn , 2000 .