Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples

Abstract Plasmonic metal nanoparticles have been explored as a new class of chemical read-outs for assaying of a variety of chemical and biological species because of their unique physico-chemical and size dependent properties. Metal nanoparticles-based optical technologies are based on either new class of organic molecular assembly or with aggregation-induced optical changes features, which can also improve the sensitivity of drug assays in pharmaceutical analysis. This review describes the advantages of surface chemistry of plasmonic metal nanoparticles (e.g., silver, copper, gold, and platinum) for tuning of their colorimetric sensing applications in various drugs assays in pharmaceutical and biological samples. It provides insights of various plasmonic metal nanoparticles-based sensing strategies for the selective, sensitive and simultaneous colorimetric assay of drugs in pharmaceutical samples. Finally, we listed some research challenges to accelerate the development of plasmonic metal nanoparticles-based colorimetric sensors that are directly applicable for assaying drugs in pharmaceutical samples.

[1]  Zhengjin Jiang,et al.  A simple, fast, and sensitive colorimetric assay for visual detection of berberine in human plasma by NaHSO4-optimized gold nanoparticles , 2017 .

[2]  Eugenia Kumacheva,et al.  Self-assembled plasmonic nanostructures. , 2014, Chemical Society reviews.

[3]  Venkata K K Upadhyayula,et al.  Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. , 2012, Analytica chimica acta.

[4]  Shuyun Bi,et al.  Investigation of the binding of AuNPs-6-mercaptopurine and the sensitive detection of 6-mercaptopurine using resonance Rayleigh light scattering. , 2017, Luminescence : the journal of biological and chemical luminescence.

[5]  Nianqiang Wu,et al.  Nanostructured Sensors for Detection of Heavy Metals: A Review , 2013 .

[6]  R. TiwariNeha,et al.  Gold Nanoparticles for Colorimetric detection of hydrolysis of antibiotics by penicillin G acylase , 2010 .

[7]  S. K. Kailasa,et al.  Malonamide dithiocarbamate functionalized gold nanoparticles for colorimetric sensing of Cu2+ and Hg2+ ions , 2015 .

[8]  S. Jeon,et al.  Colorimetric detection of penicillin G in milk using antibody-functionalized dendritic platinum nanoparticles , 2018 .

[9]  H. R. Maurer,et al.  Bromelain: biochemistry, pharmacology and medical use , 2001, Cellular and Molecular Life Sciences CMLS.

[10]  Yong Wang,et al.  Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles , 2011 .

[11]  Yang Li,et al.  Resonance scattering particles as biological nanosensors in vitro and in vivo. , 2012, Chemical Society reviews.

[12]  Bhavya Sharma,et al.  Single nanoparticle plasmonics. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Jian Dong,et al.  Growth-sensitive gold nanoshells precursor nanocomposites for the detection of L-DOPA and tyrosinase activity. , 2011, Biosensors & bioelectronics.

[14]  Baoxin Li,et al.  Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes , 2010 .

[15]  J. Mitchell,et al.  Ultrasensitive detection of testosterone using conjugate linker technology in a nanoparticle-enhanced surface plasmon resonance biosensor. , 2009, Biosensors & bioelectronics.

[16]  M. A. Kumar,et al.  Colorimetric Detection of Copper in Water Samples Using Dopamine Dithiocarbamate-Functionalized Au Nanoparticles , 2013 .

[17]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[18]  Plasmonic sensors for the competitive detection of testosterone. , 2015, The Analyst.

[19]  M. Bagheri,et al.  Colorimetric determination of Timolol concentration based on localized surface plasmon resonance of silver nanoparticles , 2016, Nanotechnology.

[20]  Nianqiang Wu,et al.  Plasmon-enhanced optical sensors: a review. , 2015, The Analyst.

[21]  C. Yi,et al.  Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system. , 2016, Materials science & engineering. C, Materials for biological applications.

[22]  Yanming Liu,et al.  Poly(thymine)-templated fluorescent copper nanoparticles for label-free detection of N-acetylcysteine in pharmaceutical samples , 2015 .

[23]  Karuna A. Rawat,et al.  Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe , 2015 .

[24]  Alberto Escarpa,et al.  Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. , 2012, Analytica chimica acta.

[25]  Hua He,et al.  Label-free silver nanoparticles for the naked eye detection of entecavir. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  Ingo Klimant,et al.  Optical nanosensors--smart tools in bioanalytics. , 2008, The Analyst.

[27]  S. K. Kailasa,et al.  Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions , 2014 .

[28]  Qiqing Zhang,et al.  Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods , 2011 .

[29]  A. Afkhami,et al.  Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid , 2014 .

[30]  K. Thurecht,et al.  A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[31]  Shuyun Bi,et al.  Using gold nanoparticles as probe for detection of salmeterol xinafoate by resonance Rayleigh light scattering. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[32]  Jie Chao,et al.  Dark-field microscopy in imaging of plasmon resonant nanoparticles. , 2014, Colloids and surfaces. B, Biointerfaces.

[33]  Karuna A. Rawat,et al.  One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration , 2017 .

[34]  D. Astruc,et al.  Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. , 2014, Chemical Society reviews.

[35]  B. Vainer,et al.  The treatment of inflammatory bowel disease with 6‐mercaptopurine or azathioprine , 2001, Alimentary pharmacology & therapeutics.

[36]  Z. Chen,et al.  A fluorescence switch sensor for 6-mercaptopurine detection based on gold nanoparticles stabilized by biomacromolecule. , 2013, Biosensors & bioelectronics.

[37]  S. Teerasong,et al.  A novel colorimetric method for detection of gamma-aminobutyric acid based on silver nanoparticles , 2016 .

[38]  Ho-Chul Shin,et al.  Colorimetric detection of penicillin antibiotic residues in pork using hybrid magnetic nanoparticles and penicillin class-selective, antibody-functionalized platinum nanoparticles , 2015 .

[39]  Frank Simon,et al.  Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. , 2016, Small.

[40]  Yumin Leng,et al.  Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum. , 2015, Talanta.

[41]  Suresh Kumar Kailasa,et al.  Colorimetric and fluorescence “turn-on” methods for the sensitive detection of bromelain using carbon dots functionalized gold nanoparticles as a dual probe , 2016 .

[42]  S. K. Kailasa,et al.  Selective visual detection of Pb(II) ion via gold nanoparticles coated with a dithiocarbamate-modified 4′-aminobenzo-18-crown-6 , 2014, Microchimica Acta.

[43]  R. Singhal,et al.  Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide via non-covalent interactions , 2016 .

[44]  Zhengbo Chen,et al.  A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes , 2015 .

[45]  Bhoomika R. Mistry,et al.  Analytical detection and method development of anticancer drug Gemcitabine HCl using gold nanoparticles. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[46]  N. Uehara,et al.  Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[47]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[48]  J. Kulisevsky,et al.  Individual triptan selection in migraine attack therapy. , 2009, Recent patents on CNS drug discovery.

[49]  Li Jiao,et al.  A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine , 2013 .

[50]  Alagarsamy Pandikumar,et al.  Gold nanoparticle based optical and electrochemical sensing of dopamine , 2015, Microchimica Acta.

[51]  Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging. , 2017, The Analyst.

[52]  S. K. Kailasa,et al.  Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples , 2014 .

[53]  E. Yeung,et al.  Recent advances in optical imaging with anisotropic plasmonic nanoparticles. , 2015, Analytical chemistry.

[54]  Vijay D. Chavada,et al.  Surface plasmon resonance based selective and sensitive colorimetric determination of azithromycin using unmodified silver nanoparticles in pharmaceuticals and human plasma. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[55]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[56]  A. Barrett,et al.  The cysteine proteinases of the pineapple plant. , 1990, The Biochemical journal.

[57]  Jwa-Min Nam,et al.  Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. , 2008, Nanomedicine.

[58]  Younan Xia,et al.  Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. , 2003, The Analyst.

[59]  M. Blanca,et al.  Chemical and biological activity of free radical 'scavengers' in allergic diseases. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[60]  C. Huang,et al.  Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. , 2008, Journal of pharmaceutical and biomedical analysis.

[61]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[62]  S. Gwo,et al.  Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. , 2016, Chemical Society reviews.

[63]  K. Shrivas,et al.  Label-free selective detection of ampicillin drug in human urine samples using silver nanoparticles as a colorimetric sensing probe , 2017 .

[64]  Zhengbo Chen,et al.  Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine , 2015, Microchimica Acta.

[65]  Chao Jing,et al.  Single plasmonic nanoparticles as ultrasensitive sensors. , 2017, The Analyst.

[66]  S. K. Kailasa,et al.  Dicoumarol assisted synthesis of water dispersible gold nanoparticles for colorimetric sensing of cysteine and lysozyme in biofluids , 2015 .

[67]  Hua He,et al.  Label-free silver nanoparticles for visual colorimetric detection of etimicin , 2014 .

[68]  Itamar Willner,et al.  Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. , 2005, Analytical chemistry.

[69]  B. Jena,et al.  Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. , 2008, Biosensors & bioelectronics.

[70]  Ning Xia,et al.  Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes. , 2012, The Analyst.

[71]  M. Alagar,et al.  Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. , 2007, International journal of pharmaceutics.

[72]  J. Veuthey,et al.  Analysis of anticancer drugs: a review. , 2011, Talanta.

[73]  S. Ai,et al.  Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions , 2012 .

[74]  Maryam Nikkhah,et al.  Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection , 2016 .

[75]  L. Liz‐Marzán,et al.  High-yield synthesis and optical response of gold nanostars , 2008, Nanotechnology.

[76]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[77]  N. Sugimoto,et al.  Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. , 2004, Analytical chemistry.

[78]  Hui-Fen Wu,et al.  One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. , 2012, The Analyst.

[79]  Suresh Kumar Kailasa,et al.  Citrate-modified silver nanoparticles as a colorimetric probe for simultaneous detection of four triptan-family drugs , 2014 .

[80]  R. Pati,et al.  Ascorbic acid-functionalized Ag NPs as a probe for colorimetric sensing of glutathione , 2015, Applied Nanoscience.

[81]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[82]  Molly M Stevens,et al.  Plasmonic nanomaterials for biodiagnostics. , 2014, Chemical Society reviews.

[83]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.