Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells

The effects exerted on the in vitro development of antigen-specific T cell lines and T cell clones by addition or neutralization of interleukin 12 (IL-12) in lymphocyte bulk culture were examined. T cell lines specific for Dermatophagoides pteronyssinus group I (Der p I) derived in the presence of IL-12 exhibited reduced ability to produce IL-4 and increased ability to produce interferon gamma (IFN-gamma), and developed into Der p I-specific CD4+ T cell clones showing a T helper type 0 (Th0)- or Th1-, instead of Th2-, like cytokine profile. In contrast, purified protein derivative (PPD)-specific T cell lines derived in the presence of anti-IL-12 antibody exhibited an increased ability to produce IL-4 and developed into PPD-specific CD4+ T cell clones showing a Th0-, instead of Th1-, like profile. The influence of IL-12 on the cytokine secretion profile of Der p I-specific T cell lines was not prevented by addition to lymphocyte bulk cultures of anti- IFN-gamma antibody, but could be at least partially inhibited by the removal from bulk cultures of CD16+ cells. Thus, IL-12 and CD16+ cells appear to have inhibitory effects on the development of IL-4-producing cells and to play an inductive role in promoting Th1-like responses.

[1]  W. Paul,et al.  The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice , 1992, The Journal of experimental medicine.

[2]  I. Frank,et al.  Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus-infected patients , 1992, The Journal of experimental medicine.

[3]  R. Coffman,et al.  IL-4 induces a Th2 response in Leishmania major-infected mice. , 1992, Journal of immunology.

[4]  H. Jansen,et al.  Functional subsets of allergen-reactive human CD4+ T cells. , 1991, Immunology today.

[5]  P. Scott IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. , 1991, Journal of immunology.

[6]  Elizabeth,et al.  Selection of a human T helper type 1-like T cell subset by mycobacteria , 1991, The Journal of experimental medicine.

[7]  Roberta,et al.  Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. , 1991, The Journal of clinical investigation.

[8]  M. Piccinni,et al.  Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Familletti,et al.  Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Hewick,et al.  Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. , 1991, Journal of immunology.

[11]  G. Trinchieri,et al.  Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers , 1991, The Journal of experimental medicine.

[12]  H. Jansen,et al.  Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients. , 1990, Journal of immunology.

[13]  T. Mosmann,et al.  Heterogeneity of mouse helper T cells. Evidence from bulk cultures and limiting dilution cloning for precursors of Th1 and Th2 cells. , 1990, Journal of immunology.

[14]  G. Trinchieri,et al.  Biology of Natural Killer Cells , 1989, Advances in Immunology.

[15]  G. Trinchieri,et al.  Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes , 1989, Journal of Experimental Medicine.

[16]  R. Coffman,et al.  Heterogeneity of cytokine secretion patterns and functions of helper T cells. , 1989, Advances in immunology.

[17]  A. Weinberg,et al.  Characterization of T helper 1 and 2 cell subsets in normal mice. Helper T cells responsible for IL-4 and IL-5 production are present as precursors that require priming before they develop into lymphokine-secreting cells. , 1988, Journal of immunology.

[18]  E. Maggi,et al.  Profiles of lymphokine activities and helper function for IgE in human T cell clones , 1988, European journal of immunology.

[19]  W. Greene,et al.  Novel interleukin 2 (IL-2) receptor appears to mediate IL-2-induced activation of natural killer cells. , 1988, The Journal of clinical investigation.

[20]  H. Macdonald,et al.  Mutant EL-4 thymoma cells polyclonally activate murine and human B cells via direct cell interaction. , 1985, Journal of immunology.

[21]  G. Trinchieri,et al.  Response of resting human peripheral blood natural killer cells to interleukin 2 , 1984, The Journal of experimental medicine.

[22]  C. Taswell Limiting dilution assays for the determination of immunocompetent cell frequencies. III. Validity tests for the single-hit Poisson model. , 1984, Journal of immunological methods.