On lower bounds for the complexity of polynomials and their multiples

Abstract. We prove a theorem giving arbitrarily long explicit sequences $ x_{1},\ldots,x_{s} $ of algebraic numbers such that any nonzero polynomial f(X) satisfying $ f(x_{1}) = \cdots = f(x_{s}) = 0 $ has nonscalar complexity $ > C \sqrt{s} $ for some positive constant C independent of s. A similar result is shown for rapidly growing rational sequences.

[1]  Walter Baur,et al.  Simplified Lower Bounds for Polynomials with Algebraic Coefficients , 1997, J. Complex..

[2]  Joos Heintz,et al.  On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..

[3]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  A. Baker Transcendental Number Theory , 1975 .

[5]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[6]  Volker Strassen,et al.  Polynomials with Rational Coefficients Which are Hard to Compute , 1974, SIAM J. Comput..

[7]  Larry J. Stockmeyer,et al.  On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..

[8]  Joos Heintz,et al.  Time-Space Tradeoffs in Algebraic Complexity Theory , 2000, J. Complex..