Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water

Charge defects in water created by excess or missing protons appear in the form of solvated hydronium H3O+ and hydroxyl OH− ions. Using the method of ab initio molecular dynamics, we have investigated the structure and proton transfer dynamics of the solvation complexes, which embed the ions in the network of hydrogen bonds in the liquid. In our ab initio molecular dynamics approach, the interatomic forces are calculated each time step from the instantaneous electronic structure using density functional methods. All hydrogen atoms, including the excess proton, are treated as classical particles with the mass of a deuterium atom. For the H3O+ ion we find a dynamic solvation complex, which continuously fluctuates between a (H5O2)+ and a (H9O4)+ structure as a result of proton transfer. The OH− has a predominantly planar fourfold coordination forming a (H9O5)− complex. Occasionally this complex is transformed in a more open tetrahedral (H7O4)− structure. Proton transfer is observed only for the more waterlik...

[1]  H. Danneel Notiz über Ionengeschwindigkeiten , 1905 .

[2]  Lee,et al.  Ab initio studies on the structural and dynamical properties of ice. , 1993, Physical review. B, Condensed matter.

[3]  M. Parrinello,et al.  Water dimer properties in the gradient-corrected density functional theory , 1992 .

[4]  E. Wicke,et al.  Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung , 1954 .

[5]  M. Parrinello,et al.  Properties of supercritical water: an ab initio simulation , 1994 .

[6]  B. Conway,et al.  Proton Conductance and the Existence of the H3O· Ion , 1956 .

[7]  M. Parrinello,et al.  Ab initio simulations of water and water ions , 1994 .

[8]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[9]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[10]  J. Hynes,et al.  Molecular‐dynamics simulation for a model nonadiabatic proton transfer reaction in solution , 1991 .

[11]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[12]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[13]  Jan K. Labanowski,et al.  Density Functional Methods in Chemistry , 1991 .

[14]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[15]  Lee,et al.  Ab initio studies on high pressure phases of ice. , 1992, Physical review letters.

[16]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[17]  Erich Wimmer,et al.  Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .

[18]  D. Vanderbilt,et al.  Proton transfer in ice , 1993 .

[19]  K. Merz,et al.  Density functional study of symmetric proton transfers , 1994 .

[20]  S. Meiboom,et al.  The Activation Energies of Proton Transfer Reactions in Water , 1964 .

[21]  James R. Rustad,et al.  A polarizable, dissociating molecular dynamics model for liquid water , 1993 .

[22]  S. Turrell,et al.  H3O+ ions in aqueous acid solutions. The infrared spectra revisited , 1976 .

[23]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[24]  Tassos Bountis,et al.  Proton transfer in hydrogen-bonded systems , 1992 .

[25]  M. Eigen Protonenübertragung, Säure‐Base‐Katalyse und enzymatische Hydrolyse. Teil I: Elementarvorgänge , 1963 .

[26]  H. Schaefer,et al.  The protonated water dimer: Extensive theoretical studies of H5O+2 , 1994 .

[27]  G. Tarjus,et al.  An adiabatic dynamical simulation study of the Zundel polarization of strongly H‐bonded complexes in solution , 1992 .

[28]  M. Newton,et al.  Ab initio studies on the structures and energetics of inner- and outer-shell hydrates of the proton and the hydroxide ion , 1971 .

[29]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[30]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water , 1995 .

[31]  Kari Laasonen,et al.  Structures of small water clusters using gradient-corrected density functional theory , 1993 .

[32]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[33]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[34]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[35]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[36]  John C. Dore,et al.  Hydrogen-bonded liquids , 1991 .

[37]  J. Price,et al.  Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n=1, 2, 3) , 1989 .

[38]  M. Klein,et al.  STRUCTURAL STUDY OF (H2O)20 AND (H2O)21H+ USING DENSITY FUNCTIONAL METHODS , 1994 .

[39]  Barnett,et al.  Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. , 1993, Physical review. B, Condensed matter.

[40]  S. Scheiner,et al.  Calculation of barriers to proton transfer using multiconfiguration self-consistent-field methods. I. Effects of localization , 1992 .

[41]  C. Mijoule,et al.  Density functional theory applied to proton-transfer systems. A numerical test , 1993 .

[42]  Dennis R. Salahub,et al.  Hydrated proton clusters and solvent effects on the proton transfer barrier: A density functional study , 1994 .

[43]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[44]  Giovanni Ciccotti,et al.  Molecular‐dynamics study of adiabatic proton‐transfer reactions in solution , 1992 .

[45]  S. Scheiner,et al.  Ab initio studies of hydrogen bonds: the water dimer paradigm. , 1994, Annual review of physical chemistry.

[46]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .

[47]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[48]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[49]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[50]  Dennis R. Salahub,et al.  Gaussian density functional calculations on hydrogen-bonded systems , 1992 .

[51]  B. Guillot,et al.  The statistical mechanics of the ionic equilibrium of water: A computer simulation study , 1988 .

[52]  G. Voth,et al.  Calculation of quantum activation free energies for proton transfer reactions in polar solvents , 1992 .

[53]  M. Eigen,et al.  Self-dissociation and protonic charge transport in water and , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  T. Komatsuzaki,et al.  Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces , 1994 .

[55]  N. Bjerrum Structure and Properties of Ice. , 1952, Science.

[56]  F. Stillinger,et al.  Study of the water octamer using the polarization model of molecular interactions , 1980 .

[57]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.