Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel.

We investigate super-resolution methods for image reconstruction from data provided by a family of scanning instruments like the Herschel observatory. To do this, we constructed a model of the instrument that faithfully reflects the physical reality, accurately taking the acquisition process into account to explain the data in a reliable manner. The inversion, i.e. the image reconstruction process, is based on a linear approach resulting from a quadratic regularized criterion and numerical optimization tools. The application concerns the reconstruction of maps for the SPIRE instrument of the Herschel observatory. The numerical evaluation uses simulated and real data to compare the standard tool (coaddition) and the proposed method. The inversion approach is capable to restore spatial frequencies over a bandwidth four times that possible with coaddition and thus to correctly show details invisible on standard maps. The approach is also applied to real data with significant improvement in spatial resolution.

[1]  R. Emery,et al.  Herschel -SPIRE observations of the Polaris flare: Structure of the diffuse interstellar medium at the sub-parsec scale , 2010, 1005.2746.

[2]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[3]  M. Halpern,et al.  SANEPIC: A Mapmaking Method for Time Stream Data from Large Arrays , 2007, 0711.3462.

[4]  P. Hansen,et al.  Methods and Applications of Inversion , 2000 .

[5]  H. Künsch Robust priors for smoothing and image restoration , 1994 .

[6]  Nikolas P. Galatsanos,et al.  Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images , 2006, IEEE Transactions on Image Processing.

[7]  Jérôme Idier,et al.  Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[8]  Journal of the Optical Society of America , 1950, Nature.

[9]  Peyman Milanfar,et al.  A computationally efficient superresolution image reconstruction algorithm , 2001, IEEE Trans. Image Process..

[10]  Jean-François Giovannelli,et al.  Bayesian estimation of regularization and PSF parameters for Wiener-Hunt deconvolution , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  A. Murat Tekalp,et al.  Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time , 1997, IEEE Trans. Image Process..

[12]  Jean-François Giovannelli,et al.  Data Inversion for Over-Resolved Spectral Imaging in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[13]  Alle-Jan van der Veen,et al.  Introduction to the Issue on Signal Processing for Space Research and Astronomy , 2008, IEEE J. Sel. Top. Signal Process..

[14]  A. Woodcraft,et al.  Thermal Modelling and Characterisation of Semiconductor Bolometers , 2002 .

[15]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[16]  A. Lee Swindlehurst,et al.  IEEE Journal of Selected Topics in Signal Processing Inaugural Issue: [editor-in-chief's message] , 2007, J. Sel. Topics Signal Processing.

[17]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[18]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[19]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[20]  J. Conan,et al.  MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Peter A. R. Ade,et al.  SPIE Astronomical Telescopes and Instrumentation , 2002 .

[22]  Peter A. R. Ade,et al.  Evolution of interstellar dust with Herschel. First results in the photodissociation regions of NGC 7023 , 2010 .

[23]  Éric Thiébaut,et al.  MIRA: an effective imaging algorithm for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[24]  Michael Elad,et al.  Superresolution restoration of an image sequence: adaptive filtering approach , 1999, IEEE Trans. Image Process..

[25]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[26]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[27]  J. Idier Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[28]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[29]  Frédéric Champagnat,et al.  Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[31]  Frédéric Champagnat,et al.  An Improved Observation Model for Super-Resolution Under Affine Motion , 2006, IEEE Transactions on Image Processing.

[32]  P. Chanial,et al.  SPS: a software simulator for the Herschel-SPIRE photometer , 2009, 0906.3307.

[33]  Joos Vandewalle,et al.  Super-Resolution From Unregistered and Totally Aliased Signals Using Subspace Methods , 2007, IEEE Transactions on Signal Processing.

[34]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[35]  J. Bock,et al.  Relative performance of filled and feedhorn-coupled focal-plane architectures. , 2002, Applied optics.

[36]  Thomas S. Huang,et al.  Image processing , 1971 .

[37]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[38]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.

[39]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[40]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[41]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[42]  A. Hall Applied Optics. , 2022, Science.

[43]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[44]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.