Integrative clinical and molecular characterization of translocation renal cell carcinoma.

[1]  J. Foster,et al.  Phase II study of atezolizumab in advanced alveolar soft part sarcoma (ASPS). , 2021 .

[2]  D. Schadendorf,et al.  Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: Primary phase III results from RELATIVITY-047 (CA224-047). , 2021 .

[3]  R. Motzer,et al.  Nivolumab plus cabozantinib in patients with non-clear cell renal cell carcinoma: Results of a phase 2 trial. , 2021 .

[4]  Steven L. Chang,et al.  Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. , 2021, Cancer cell.

[5]  J. Cheville,et al.  New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia , 2021, Modern Pathology.

[6]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[7]  M. Atkins,et al.  Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Non–Clear Cell Renal Cell Carcinoma , 2021, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  E. V. Van Allen,et al.  Beyond conventional immune-checkpoint inhibition — novel immunotherapies for renal cell carcinoma , 2021, Nature Reviews Clinical Oncology.

[9]  Steven L. Chang,et al.  Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma , 2020, Nature Communications.

[10]  P. Catalano,et al.  Expression of T-Cell Exhaustion Molecules and Human Endogenous Retroviruses as Predictive Biomarkers for Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma , 2020, Clinical Cancer Research.

[11]  A. Boletta,et al.  Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma , 2020, Cancers.

[12]  P. Hegde,et al.  Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. , 2020, Cancer cell.

[13]  S. Gygi,et al.  3D Culture Models with CRISPR Screens Reveal Hyperactive NRF2 as a Prerequisite for Spheroid Formation via Regulation of Proliferation and Ferroptosis. , 2020, Molecular cell.

[14]  Heather L. Mulder,et al.  Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations , 2020, Nature Communications.

[15]  Danfeng Xue,et al.  Emerging role of NRF2 in ROS-mediated tumor chemoresistance. , 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[16]  Francisco J. Sánchez-Rivera,et al.  Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1 , 2020, Nature Cancer.

[17]  Ashton C. Berger,et al.  Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma , 2020, Nature Medicine.

[18]  Ming Zhao,et al.  Malignant melanotic Xp11 neoplasms exhibit a clinicopathologic spectrum and gene expression profiling akin to alveolar soft part sarcoma: a proposal for reclassification , 2020, The Journal of pathology.

[19]  M. Malumbres,et al.  Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. , 2020, Cancer cell.

[20]  R. Motzer,et al.  Comprehensive Genomic Analysis of Translocation Renal Cell Carcinoma Reveals Copy-Number Variations as Drivers of Disease Progression , 2020, Clinical Cancer Research.

[21]  Brendan Reardon,et al.  CoMut: visualizing integrated molecular information with comutation plots , 2020, bioRxiv.

[22]  The Icgctcga Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes , 2020 .

[23]  Yue Sun,et al.  Control of Rab7a activity and localization through endosomal type Igamma PIP 5‐kinase is required for endosome maturation and lysosome function , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  A. Kamphorst,et al.  An intra-tumoral niche maintains and differentiates stem-like CD8 T cells , 2019, Nature.

[25]  G. Freeman,et al.  Results of a Multicenter Phase II Study of Atezolizumab and Bevacizumab for Patients With Metastatic Renal Cell Carcinoma With Variant Histology and/or Sarcomatoid Features. , 2019, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  N. Schultz,et al.  Harmonization of Tumor Mutational Burden Quantification and Association With Response to Immune Checkpoint Blockade in Non-Small-Cell Lung Cancer. , 2019, JCO precision oncology.

[27]  A. Caliò,et al.  MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge , 2019, Cancers.

[28]  J. Geller,et al.  Treatment of advanced pediatric renal cell carcinoma , 2019, Pediatric blood & cancer.

[29]  Aviad Tsherniak,et al.  Extracting Biological Insights from the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines , 2019, bioRxiv.

[30]  C. Porta,et al.  Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial , 2019, The Lancet.

[31]  Y. Xiong,et al.  Effect of the Nrf2-ARE signaling pathway on biological characteristics and sensitivity to sunitinib in renal cell carcinoma. , 2019, Oncology letters.

[32]  W. Linehan,et al.  The Metabolic Basis of Kidney Cancer. , 2019, Cancer discovery.

[33]  Joshua M. Korn,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[34]  Ash A. Alizadeh,et al.  Determining cell-type abundance and expression from bulk tissues with digital cytometry , 2019, Nature Biotechnology.

[35]  W. Linehan,et al.  TFE3 Xp11.2 Translocation Renal Cell Carcinoma Mouse Model Reveals Novel Therapeutic Targets and Identifies GPNMB as a Diagnostic Marker for Human Disease , 2019, Molecular Cancer Research.

[36]  John G Doench,et al.  Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. , 2019, Cell metabolism.

[37]  T. Choueiri,et al.  Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. , 2019, The Lancet. Oncology.

[38]  P. Agius,et al.  Immunogenic neoantigens derived from gene fusions stimulate T cell responses , 2019, Nature Medicine.

[39]  Xiaoming Wang,et al.  Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression , 2019, International journal of molecular medicine.

[40]  P. Catalano,et al.  irRECIST for the Evaluation of Candidate Biomarkers of Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma: Analysis of a Phase II Prospective Clinical Trial , 2019, Clinical Cancer Research.

[41]  T. Choueiri,et al.  Immune checkpoint inhibitors in MITF family translocation renal cell carcinomas and genetic correlates of exceptional responders , 2018, Journal of Immunotherapy for Cancer.

[42]  C. Cole,et al.  The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers , 2018, Nature Reviews Cancer.

[43]  Peter C. Hollenhorst,et al.  Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma , 2018, Clinical Cancer Research.

[44]  Ashton C. Berger,et al.  Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer , 2018, Nature Genetics.

[45]  S. Gupton,et al.  Mammalian TRIM67 Functions in Brain Development and Behavior , 2018, eNeuro.

[46]  X. Teng,et al.  RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations , 2018, Modern Pathology.

[47]  O. Fernández,et al.  Renal Cell Carcinoma Associated With Xp11.2 Translocation/TFE3 Gene-fusion: A Long Response to mammalian target of rapamycin (mTOR) Inhibitors. , 2018 .

[48]  Todd R. Golub,et al.  Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration , 2018, bioRxiv.

[49]  G. Mayhew,et al.  Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal , 2018, Cell.

[50]  Orestis Efthimiou,et al.  Practical guide to the meta-analysis of rare events , 2018, Evidence Based Journals.

[51]  Ashton C. Berger,et al.  Genomic and Functional Approaches to Understanding Cancer Aneuploidy. , 2018, Cancer cell.

[52]  Adrian V. Lee,et al.  An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics , 2018, Cell.

[53]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[54]  Paul T. Spellman,et al.  The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma , 2018, Cell reports.

[55]  Li Ding,et al.  Driver Fusions and Their Implications in the Development and Treatment of Human Cancers , 2018, Cell reports.

[56]  Matthew E. Ritchie,et al.  Synergy between the KEAP1/NRF2 and PI3K Pathways Drives Non-Small-Cell Lung Cancer with an Altered Immune Microenvironment. , 2018, Cell metabolism.

[57]  Xiao-jun Zhou,et al.  Novel gene fusion of PRCC–MITF defines a new member of MiT family translocation renal cell carcinoma: clinicopathological analysis and detection of the gene fusion by RNA sequencing and FISH , 2018, Histopathology.

[58]  Li Ding,et al.  Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. , 2018, Cell systems.

[59]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[60]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[61]  Jill P. Mesirov,et al.  Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway , 2017, Nature.

[62]  Donavan T. Cheng,et al.  Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients , 2017, Nature Medicine.

[63]  Alexander Lex,et al.  UpSetR: an R package for the visualization of intersecting sets and their properties , 2017, bioRxiv.

[64]  L. Macconaill,et al.  Validation of OncoPanel: A Targeted Next-Generation Sequencing Assay for the Detection of Somatic Variants in Cancer. , 2017, Archives of pathology & laboratory medicine.

[65]  R. Motzer,et al.  Systemic Therapy for Metastatic Renal-Cell Carcinoma. , 2017, The New England journal of medicine.

[66]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[67]  S. Giordano,et al.  The Dual Roles of NRF2 in Cancer. , 2016, Trends in molecular medicine.

[68]  P. Humphrey,et al.  The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. , 2016, European urology.

[69]  Chris Sander,et al.  Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. , 2016, Cell reports.

[70]  Konstantinos J. Mavrakis,et al.  Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5 , 2016, Science.

[71]  T. Golub,et al.  MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells , 2016, Science.

[72]  Steven J. M. Jones,et al.  Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. , 2016, The New England journal of medicine.

[73]  Joshua A. Bittker,et al.  Correlating chemical sensitivity and basal gene expression reveals mechanism of action , 2015, Nature chemical biology.

[74]  Ralf Bender,et al.  Methods to estimate the between‐study variance and its uncertainty in meta‐analysis† , 2015, Research synthesis methods.

[75]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[76]  A. Ravaud,et al.  Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. , 2015, The New England journal of medicine.

[77]  Joshua A. Bittker,et al.  Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. , 2015, Cancer discovery.

[78]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[79]  Hongqian Guo,et al.  Xp11.2 translocation renal cell carcinomas in young adults , 2015, BMC Urology.

[80]  Qi Zhao,et al.  IBS: an illustrator for the presentation and visualization of biological sequences , 2015, Bioinform..

[81]  Wei Chen,et al.  Atp6v1c1 Facilitates Breast Cancer Growth and Bone Metastasis through the mTORC1 Pathway , 2015 .

[82]  Trevor J Pugh,et al.  Oncotator: Cancer Variant Annotation Tool , 2015, Human mutation.

[83]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[84]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[85]  Lisa N Kinch,et al.  Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes , 2014, Nature Genetics.

[86]  O. Hes,et al.  Molecular-genetic analysis is essential for accurate classification of renal carcinoma resembling Xp11.2 translocation carcinoma , 2015, Virchows Archiv.

[87]  Alex Lancaster,et al.  PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition , 2014, Bioinform..

[88]  Soroush Rais-Bahrami,et al.  Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers , 2014, Nature Reviews Urology.

[89]  Erika J. Thompson,et al.  Next-Generation Sequencing of Translocation Renal Cell Carcinoma Reveals Novel RNA Splicing Partners and Frequent Mutations of Chromatin-Remodeling Genes , 2014, Clinical Cancer Research.

[90]  C. Sander,et al.  SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. , 2013, Cancer cell.

[91]  H. Aburatani,et al.  Integrated molecular analysis of clear-cell renal cell carcinoma , 2013, Nature Genetics.

[92]  F. Zwartkruis,et al.  Rheb and Rags come together at the lysosome to activate mTORC1. , 2013, Biochemical Society transactions.

[93]  P. Tamboli,et al.  Genomic Heterogeneity of Translocation Renal Cell Carcinoma , 2013, Clinical Cancer Research.

[94]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[95]  Hyunsook Kim,et al.  Tmem64 modulates calcium signaling during RANKL-mediated osteoclast differentiation. , 2013, Cell metabolism.

[96]  T. Choueiri,et al.  External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. , 2013, The Lancet. Oncology.

[97]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[98]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[99]  Y. Sauve,et al.  Regulation of retinal interneuron subtype identity by the Iroquois homeobox gene Irx6 , 2012, Development.

[100]  W Marston Linehan,et al.  Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics , 2012, Genome research.

[101]  F. Ciruela,et al.  Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression. , 2012, Gene.

[102]  Jesse M. Engreitz,et al.  Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease , 2012, PloS one.

[103]  M. Sporn,et al.  NRF2 and cancer: the good, the bad and the importance of context , 2012, Nature Reviews Cancer.

[104]  J. Cheville,et al.  TFE3 Rearrangements in Adult Renal Cell Carcinoma: Clinical and Pathologic Features With Outcome in a Large Series of Consecutively Treated Patients , 2012, The American journal of surgical pathology.

[105]  W. Linehan,et al.  Translocation Renal Cell Carcinomas in Adults: A Single-institution Experience , 2012, The American journal of surgical pathology.

[106]  Y. Ishikawa,et al.  Diverse Fusion Patterns and Heterogeneous Clinicopathologic Features of Renal Cell Carcinoma With t(6;11) Translocation , 2012, The American journal of surgical pathology.

[107]  Ximing J. Yang,et al.  An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. , 2011, Cancer cell.

[108]  P. Carmeliet,et al.  Renal Cyst Formation in Fh1-Deficient Mice Is Independent of the Hif/Phd Pathway: Roles for Fumarate in KEAP1 Succination and Nrf2 Signaling , 2011, Cancer cell.

[109]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[110]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[111]  T. Sjöblom,et al.  Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors , 2011, Genes, chromosomes & cancer.

[112]  P. Tamboli,et al.  Vascular endothelial growth factor‐targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma , 2010, Cancer.

[113]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[114]  W. Linehan,et al.  Dual-color, Break-apart FISH Assay on Paraffin-embedded Tissues as an Adjunct to Diagnosis of Xp11 Translocation Renal Cell Carcinoma and Alveolar Soft Part Sarcoma , 2010, The American journal of surgical pathology.

[115]  P. Camparo,et al.  Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[116]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[117]  Wanling Xie,et al.  Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[118]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[119]  L. Schwartz,et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). , 2009, European journal of cancer.

[120]  R. Dummer,et al.  Novel MITF targets identified using a two‐step DNA microarray strategy , 2008, Pigment cell & melanoma research.

[121]  Jiyang Cai,et al.  Modulation of Nrf2-dependent antioxidant functions in the RPE by Zip2, a zinc transporter protein. , 2008, Investigative ophthalmology & visual science.

[122]  M. Ladanyi,et al.  Xp11 Translocation Renal Cell Carcinoma in Adults: Expanded Clinical, Pathologic, and Genetic Spectrum , 2007, The American journal of surgical pathology.

[123]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[125]  Blanca Suarez-Merino,et al.  Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. , 2005, Neuro-oncology.

[126]  D. Fisher,et al.  Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. , 2004, Bone.

[127]  Tom Misteli,et al.  Spatial proximity of translocation-prone gene loci in human lymphomas , 2003, Nature Genetics.

[128]  David Hogg,et al.  Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma , 1999, Nature Genetics.

[129]  G. Walker,et al.  Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets , 1998, Genes, chromosomes & cancer.

[130]  Damian Smedley,et al.  Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma , 1997, Oncogene.

[131]  S Gill,et al.  The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. , 1996, Human molecular genetics.