Effects of ripening stage and cultivar on physicochemical properties and pectin nanostructures of jujubes.

[1]  Hongshun Yang,et al.  Effects of temperature and cultivar on nanostructural changes of water-soluble pectin and chelate-soluble pectin in peaches. , 2012, Carbohydrate polymers.

[2]  A. P. Gunning,et al.  Atomic force microscopy as a nanoscience tool in rational food design. , 2011, Journal of the science of food and agriculture.

[3]  Hongshun Yang,et al.  Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment , 2011 .

[4]  Ting Yu,et al.  A combination of marine yeast and food additive enhances preventive effects on postharvest decay of jujubes (Zizyphus jujuba) , 2011 .

[5]  Hongshun Yang,et al.  Morphology, profile and role of chelate-soluble pectin on tomato properties during ripening. , 2010 .

[6]  Shaoyang Liu,et al.  Application of AFM in microbiology: a review. , 2010, Scanning.

[7]  Hongshun Yang,et al.  Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage , 2010 .

[8]  Hongshun Yang,et al.  Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits , 2009 .

[9]  P. Cooke,et al.  Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp ☆ , 2009 .

[10]  Zhihong Xin,et al.  Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd) , 2009 .

[11]  Hongshun Yang,et al.  Comparative studies on nanostructures of three kinds of pectins in two peach cultivars using atomic force microscopy , 2009 .

[12]  Hongshun Yang,et al.  The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness , 2009 .

[13]  Xingfeng Guo,et al.  Physicochemical properties, firmness, and nanostructures of sodium carbonate-soluble pectin of 2 Chinese cherry cultivars at 2 ripening stages. , 2008, Journal of food science.

[14]  D. Huber,et al.  In vivo pectin solubility in ripening and chill-injured tomato fruit , 2008 .

[15]  Shuhua Zhu,et al.  Effect of Nitric Oxide on Alcoholic Fermentation and Qualities of Chinese Winter Jujube During Storage , 2007 .

[16]  Liuping Fan,et al.  Nutritional composition of five cultivars of chinese jujube , 2007 .

[17]  J. Felföldi,et al.  Changes in physical properties during fruit ripening of Hungarian sweet cherry (Prunus avium L.) cultivars , 2006 .

[18]  D. Brummell Cell wall disassembly in ripening fruit. , 2006, Functional plant biology : FPB.

[19]  Hongshun Yang,et al.  Microstructure changes of sodium carbonate-soluble pectin of peach by AFM during controlled atmosphere storage , 2006 .

[20]  I. Mignani,et al.  Cell wall physicochemical aspects of peach fruit related to internal breakdown symptoms , 2006 .

[21]  Hongshun Yang,et al.  Atomic force microscopy study of the ultrastructural changes of chelate-soluble pectin in peaches under controlled atmosphere storage , 2006 .

[22]  Hongshun Yang,et al.  Manipulate and stretch single pectin molecules with modified molecular combing and fluid fixation techniques , 2006 .

[23]  Hongshun Yang,et al.  Atomic force microscopy of the water-soluble pectin of peaches during storage , 2005 .

[24]  Xiangjuan Zhou,et al.  Effects of 1-methylcyclopropene and gibberellic acid on ripening of Chinese jujube (Zizyphus jujuba M) in relation to quality , 2004 .

[25]  K. Mcrae,et al.  An Integrated Microstructural and Sensory Approach to De scribe Apple Texture , 2003 .

[26]  N. Rigby,et al.  Investigating the nature of branching in pectin by atomic force microscopy and carbohydrate analysis. , 2001, Carbohydrate research.

[27]  A. P. Gunning,et al.  Atomic Force Microscopy as a Tool for Interpreting the Rheology of Food Biopolymers at the Molecular Level , 2001 .

[28]  A. P. Gunning,et al.  Characterising semi-refined iota-carrageenan networks by atomic force microscopy , 1998 .