Travel-Time Prediction Using Gaussian Process Regression: A Trajectory-Based Approach

This paper is concerned with the task of travel-time prediction for an arbitrary origin-destination pair on a map. Unlike most of the existing studies, which focus only on a particular link (road segment) with heavy traffic, our method allows us to probabilistically predict the travel time along an unknown path (a sequence of links) if the similarity between paths is defined as a kernel function. Our first innovation is to use a string kernel to represent the similarity between paths. Our second new idea is to apply Gaussian process regression for probabilistic travel-time prediction. We tested our approach with realistic traffic data.

[1]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[2]  A. R. Cook,et al.  ANALYSIS OF FREEWAY TRAFFIC TIME-SERIES DATA BY USING BOX-JENKINS TECHNIQUES , 1979 .

[3]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[4]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[5]  Washington Y. Ochieng,et al.  A general map matching algorithm for transport telematics applications , 2003 .

[6]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[7]  D. T. Lee,et al.  Travel-time prediction with support vector regression , 2004, IEEE Transactions on Intelligent Transportation Systems.

[8]  Takayuki Morikawa Development and Performance Evaluation Test of Dynamic Route Guidance System PRONAVI , 2007 .

[9]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[10]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[11]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[12]  J. Davis Statistical Pattern Recognition:Statistical Pattern Recognition , 2003 .

[13]  Carl Edward Rasmussen,et al.  Observations on the Nyström Method for Gaussian Process Prediction , 2002 .

[14]  Yannis Manolopoulos,et al.  Trajectory Similarity Search in Spatial Networks , 2006, 2006 10th International Database Engineering and Applications Symposium (IDEAS'06).

[15]  Jan-Ming Ho,et al.  Travel time prediction with support vector regression , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[16]  Chih-Ming Hsu,et al.  A Case Study on Highway Flow Model Using 2-D Gaussian Mixture Modeling , 2007, 2007 IEEE Intelligent Transportation Systems Conference.

[17]  Tomio Miwa,et al.  Route Identification and Travel Time Prediction Using Probe-Car Data , 2004 .

[18]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[19]  H. Mizuta,et al.  Simulating whole city traffic with millions of multiple vehicle agents , 2008 .

[20]  William H. Press,et al.  Numerical recipes in C , 2002 .

[21]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[22]  Stephen D. Clark,et al.  Traffic Prediction Using Multivariate Nonparametric Regression , 2003 .

[23]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[24]  Takayuki Nakata,et al.  Mining traffic data from probe-car system for travel time prediction , 2004, KDD.

[25]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[26]  Hans-Peter Kriegel,et al.  Statistical Density Prediction in Traffic Networks , 2008, SDM.

[27]  Dimitrios Gunopulos,et al.  Elastic Translation Invariant Matching of Trajectories , 2005, Machine Learning.

[28]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[29]  Christopher K. I. Williams,et al.  Observations on the Nyström Method for Gaussian Processes , 2002 .

[30]  Andreas Schadschneider,et al.  A stochastic cellular automaton model for traffic flow with multiple metastable states , 2004 .

[31]  Shiliang Sun,et al.  A Bayesian network approach to time series forecasting of short-term traffic flows , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[32]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[33]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[34]  John W. Polak,et al.  Modeling Urban Link Travel Time with Inductive Loop Detector Data by Using the k-NN Method , 2005 .