The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography

A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.

[1]  M. Franchini,et al.  Skarns Related to Porphyry–Style Mineralization at Caicayén Hill, Neuquén, Argentina: Composition and Evolution of Hydrothermal Fluids , 2000 .

[2]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[3]  W. J. Jones,et al.  A new squat lobster family of Galatheoidea (Crustacea, Decapoda: Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge , 2005 .

[4]  Steven D. Gaines,et al.  PROPAGULE DISPERSAL IN MARINE AND TERRESTRIAL ENVIRONMENTS: A COMMUNITY PERSPECTIVE , 2003 .

[5]  D. Stevens,et al.  An additional deep-water mass in Drake Passage as revealed by 3He data , 2003 .

[6]  C. Reeb,et al.  Molecular phylogeny of Eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. , 2001, Molecular phylogenetics and evolution.

[7]  J. Berge,et al.  The fauna of hydrothermal vents on the Mohn Ridge (North Atlantic) , 2010 .

[8]  J. Levinton,et al.  Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  P. Tyler,et al.  Hydrothermal plumes above the East Scotia Ridge: an isolated high-latitude back-arc spreading centre , 2000 .

[10]  D. Vaulot,et al.  Clade-Specific 16S Ribosomal DNA Oligonucleotides Reveal the Predominance of a Single Marine Synechococcus Clade throughout a Stratified Water Column in the Red Sea , 2003, Applied and Environmental Microbiology.

[11]  K. Crandall,et al.  The Decapod Tree of Life: Compiling the Data and Moving toward a Consensus of Decapod Evolution , 2009, Arthropod Systematics & Phylogeny.

[12]  S. Goffredi,et al.  Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. , 2008, Environmental microbiology.

[13]  C. V. Dover,et al.  Reproductive ecology of Bouvierella curtirama (Amphipoda: Eusiridae) from chemically distinct vents in the Lucky Strike vent field, Mid-Atlantic Ridge , 2004 .

[14]  T. Shank,et al.  Biodiversity and biogeography of hydrothermal vent species : thirty years of discovery and investigations , 2007 .

[15]  P. Morris,et al.  Structure and tectonic evolution of the South Sandwich arc , 2003, Geological Society, London, Special Publications.

[16]  C. Langmuir,et al.  Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean , 2003, Nature.

[17]  D. Jollivet,et al.  Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour , 1993 .

[18]  R. Larter,et al.  Subduction influence on magma supply at the East Scotia Ridge , 1997 .

[19]  S. Petersen,et al.  Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica , 2001 .

[20]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[21]  A. Koschinsky,et al.  Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithosphere , 2011 .

[22]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[23]  Harald Meier,et al.  46. ARB: A Software Environment for Sequence Data , 2011 .

[24]  M. Pérez‐Losada,et al.  The tempo and mode of barnacle evolution. , 2008, Molecular phylogenetics and evolution.

[25]  Cindy Lee Van Dover,et al.  The Ecology of Deep-Sea Hydrothermal Vents , 2000 .

[26]  D. Geiger,et al.  Molecular phylogeny of Vetigastropoda reveals non-monophyletic Scissurellidae, Trochoidea, and Fissurelloidea , 2005, Molluscan Research.

[27]  C. German,et al.  Evolution and Biogeography of Deep-Sea Vent and Seep Invertebrates , 2002, Science.

[28]  N. Dubilier,et al.  Symbiotic diversity in marine animals: the art of harnessing chemosynthesis , 2008, Nature Reviews Microbiology.

[29]  M. Raupach,et al.  First insights into the biodiversity and biogeography of the Southern Ocean deep sea , 2007, Nature.

[30]  H. Pörtner,et al.  Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation? , 2001, Polar Biology.

[31]  J. Priscu,et al.  Antarctic Communities: Species, Structure and Survival , 1998 .

[32]  A. Rogers Evolution and biodiversity of Antarctic organisms: a molecular perspective , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  T. Stanton Joint graduate education program: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution , 2014 .

[34]  M. Pérez‐Losada,et al.  Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches. , 2004, Systematic biology.

[35]  S. Humphris,et al.  Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge , 1988 .

[36]  Glenn De ' ath,et al.  MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES-ENVIRONMENT RELATIONSHIPS , 2002 .

[37]  J. Pearse,et al.  Reproduction of Antarctic Benthic Marine Invertebrates: Tempos, Modes, and Timing , 1991 .

[38]  J. Ott Handbook of Deep‐Sea Hydrothermal Vent Fauna , 2006 .

[39]  V. Tunnicliffe,et al.  Influence of sea-floor spreading on the global hydrothermal vent fauna , 1996, Nature.

[40]  R. Livermore Back-arc spreading and mantle flow in the East Scotia Sea , 2003, Geological Society, London, Special Publications.

[41]  C. McClain,et al.  The dynamics of biogeographic ranges in the deep sea , 2010, Proceedings of the Royal Society B: Biological Sciences.

[42]  A. Warén,et al.  DNA Barcoding of Lepetodrilus Limpets Reveals Cryptic Species , 2008 .

[43]  D. S. Stamps,et al.  Scotia arc kinematics from GPS geodesy , 2004 .

[44]  A. Rogers,et al.  Population Genetics of Bathyal and Abyssal Organisms , 1999 .

[45]  R. Vrijenhoek Genetic diversity and connectivity of deep‐sea hydrothermal vent metapopulations , 2010, Molecular ecology.

[46]  Joel W. Martin,et al.  Halice hesmonectes, a new species of pardaliscid amphipod (Crustacea, Peracarida) from hydrothermal vents in the eastern Pacific , 1993 .

[47]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[48]  R. Vrijenhoek,et al.  WHEN GAPS REALLY ARE GAPS: STATISTICAL PHYLOGEOGRAPHY OF HYDROTHERMAL VENT INVERTEBRATES , 2010, Evolution; international journal of organic evolution.

[49]  R. Livermore,et al.  Enhanced magma supply at the southern East Scotia Ridge: evidence for mantle flow around the subducting slab? , 2001 .

[50]  S. Hedges,et al.  Rapid evolution to terrestrial life in Jamaican crabs , 1998, Nature.

[51]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[52]  J. Wares Patterns of speciation inferred from mitochondrial DNA in North American Chthamalus (Cirripedia: Balanomorpha: Chthamaloidea). , 2001, Molecular phylogenetics and evolution.

[53]  P. Wiebe,et al.  Deep-sea amphipod swarms , 1992, Nature.

[54]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[55]  Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale , 2009 .

[56]  P. Szatmari,et al.  Global Miocene tectonics and the modern world , 2009 .

[57]  J. Auzende,et al.  Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity , 1996 .

[58]  Kei Okamura,et al.  Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge , 2001 .

[59]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[60]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[61]  P. Craddock Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin , 2009 .

[62]  R. Newton,et al.  Mantle helium reveals Southern Ocean hydrothermal venting , 2010 .

[63]  E. Oberlander Biodiversity and Biogeography of hydrothermal Vent Species , 2007 .

[64]  A. Machordom,et al.  Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. , 2004, Molecular phylogenetics and evolution.

[65]  M. Lilley,et al.  Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge , 2010, Nature communications.

[66]  Sven Petersen,et al.  The physicochemical habitat of Sclerolinum sp. at Hook Ridge hydrothermal vent, Bransfield Strait, Antarctica , 2005 .

[67]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[68]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[69]  John R. Delaney,et al.  Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge , 1992 .

[70]  Yves Fouquet,et al.  Hydrothermal activity in the Lau back-arc basin:Sulfides and water chemistry , 1991 .

[71]  K. Linse,et al.  Towards a generalized biogeography of the Southern Ocean benthos , 2009 .

[72]  J. Gutt,et al.  Antarctic marine biodiversity an overview , 1997 .

[73]  L. Lundsten,et al.  Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount , 2009, PloS one.

[74]  R. Vrijenhoek,et al.  Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents , 2004, Molecular ecology.

[75]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[76]  C. Devey InterRidge Statement of Commitment to Responsible Research Practices at Deep-Sea Hydrothermal Vents , 2006 .

[77]  S. Goffredi Indigenous ectosymbiotic bacteria associated with diverse hydrothermal vent invertebrates. , 2010, Environmental microbiology reports.

[78]  J. Buckeridge Neolepas osheai sp. nov., a new deep‐sea vent barnacle (Cirripedia: Pedunculata) from the Brothers Caldera, south‐west Pacific Ocean , 2000 .

[79]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[80]  R. Cowen,et al.  Larval dispersal and marine population connectivity. , 2009, Annual review of marine science.

[81]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.