Surfing the Millimeter-Wave: Multilayer Photoimageable Technology for High Performance SoP Components in Systems at Millimeter-Wave and Beyond

Ever-growing demand and emerging applications in the millimeter-wave (mmW) range for both commercial and military purposes require high-performance yet compact circuits and systems at a reasonable cost. Multilayer multichip module (MCM) or system-on-package (SoP) technologies are widely regarded as an excellent means to meet these advanced requirements. A variety of multilayer MCM technologies-including low-temperature cofired ceramic (LTCC), liquid crystal polymer (LCP), organic, and thin film on glass-have been developed. However, when conventional thick film is used, it is very difficult in applications requiring high mmW bands to realize either 1) lumped/passive components having a high self-resonance frequency (SRF), quality factor (Q), and also compactness or 2) substrate integrated waveguide (SIW) components with continuous sidewalls.

[1]  Kamal K. Samanta,et al.  High Performance Compact Multilayer Circular Spiral Inductors in Advanced Photoimageable Technology , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[2]  Kamal K. Samanta,et al.  Advanced multilayer photoimaged substrate integrated waveguides and RF front-end for emerging mm-wave wireless applications , 2014, 2014 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet).

[3]  Kamal K. Samanta,et al.  Ceramic based novel multilayer and miniaturized RF/millimetre-wave components and highly integrated mm-wave modules , 2014, 2014 IEEE International Wireless Symposium (IWS 2014).

[4]  Kamal K. Samanta,et al.  Advanced photoimagable ceramic based technology: Substrate integrated waveguides and passives to multilayer cost-effective MCMs at MM-wave and beyond , 2013, IEEE MTT-S International Microwave and RF Conference.

[5]  K. K. Samanta,et al.  A novel multilayer/3d technology for advanced microwave and millimetre-wave wireless circuits and systems , 2012, 2012 5th International Conference on Computers and Devices for Communication (CODEC).

[6]  I. Robertson,et al.  Experimental study of the effect of ground width for millimetre-wave multilayer coplanar waveguides in ceramic multichip module technology , 2012 .

[7]  J. X. Chen,et al.  Millimeter-wave and terahertz transmission loss of CMOS process-based substrate integrated waveguide , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[8]  Ian D. Robertson,et al.  Dielectric thickness and ground width effect on multilayer coplanar components and circuits for ceramic multichip modules , 2012 .

[9]  Ian D. Robertson,et al.  Characterisation and application of embedded lumped elements in multilayer advanced thick-film multichip-module technology , 2012 .

[10]  I. Robertson,et al.  Modelling and design of high performance capacitors for CPW multi-chip modules , 2011, 2011 41st European Microwave Conference.

[11]  K. K. Samanta,et al.  Layout efficient and high performance circular spiral inductors for multilayer multichip modules , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[12]  I. D. Robertson,et al.  Advanced Multilayer Thick-Film System-on-Package Technology for Miniaturized and High Performance CPW Microwave Passive Components , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[13]  Ian D. Robertson,et al.  An embedded 60‐GHz planar bandpass filter in multilayer advanced thick‐film system‐in‐package technology , 2011 .

[14]  Muhammad Farhan Shafique,et al.  Laser prototyping of multilayer LTCC microwave components for system-in-package applications , 2011 .

[15]  Ke Wu,et al.  Review of substrate-integrated waveguide circuits and antennas , 2011 .

[16]  H. Reichl,et al.  Wafer Level Processing of Integrated Passive Components Using Polyimide or Polybenzoxazole/Copper Multilayer Technology , 2010, IEEE Transactions on Advanced Packaging.

[17]  I. Robertson,et al.  The effect of the ground plane incorporated into layers on multilayer CBCPW lines, lumped elements and circuit for a compact MCM , 2009, 2009 European Microwave Conference (EuMC).

[18]  Hwan-Hee Lee,et al.  Characterization of Fully Embedded RF Inductors in Organic SOP Technology , 2009, IEEE Transactions on Advanced Packaging.

[19]  J.C. Batchelor,et al.  Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis , 2009, IEEE Transactions on Advanced Packaging.

[20]  I.D. Robertson,et al.  Multilayer thick-film photoimageable technology for 60 GHz system-in-package , 2008, 2008 Asia-Pacific Microwave Conference.

[21]  Ian D. Robertson,et al.  Design and performance of a 60-GHz multi-chip module receiver employing substrate integrated waveguides , 2007 .

[22]  I. Robertson,et al.  Characterisation of TFMS and CPW Lines and Interconnections up to 100 GHz in Multilayer Photoimageable Thick Film Technology , 2006, 2006 European Microwave Conference.

[23]  Ian D. Robertson,et al.  60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter , 2006 .

[24]  P. Young,et al.  Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology , 2005, IEEE Transactions on Microwave Theory and Techniques.

[25]  I. Robertson,et al.  Advanced multilayer thick-film technology for cost-effective millimetre-wave multi-chip modules , 2005, High Frequency Postgraduate Student Colloquium, 2005.

[26]  I. Robertson,et al.  Ultrawideband characterisation of photoimageable thick film materials for microwave and millimeter-wave design , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[27]  Paul R. Young,et al.  W-band substrate integrated waveguide slot antenna , 2005 .

[28]  Joy Laskar,et al.  Gigabit wireless: system-on-a-package technology , 2004, Proceedings of the IEEE.

[29]  J. Papapolymerou,et al.  3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology , 2004, IEEE Transactions on Advanced Packaging.

[30]  H. Happy,et al.  Design of narrow-band DBR planar filters in Si-BCB technology for millimeter-wave applications , 2004, IEEE Transactions on Microwave Theory and Techniques.

[31]  Gye-An Lee,et al.  Design and analysis of embedded inductor on low cost multilayer laminate MCM technology , 2003, Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710).

[32]  J. Laskar,et al.  Liquid crystal polymer-based integrated passive development for RF applications , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[33]  G. Dambrine,et al.  Wide- and narrow-band bandpass coplanar filters in the W-frequency band , 2003 .

[34]  Ke Wu,et al.  Single-substrate integration technique of planar circuits and waveguide filters , 2003 .

[35]  J. Laskar,et al.  RF-system-on-package (SOP) for wireless communications , 2002, IEEE Microwave Magazine.

[36]  Barry K. Gilbert,et al.  The use of laminate multichip modules for the packaging of 9-GHz digital multichip circuits , 2002 .

[37]  A. Sutono,et al.  High Q LTCC-based passive library for wireless system-on-package (SOP) module development , 2001 .

[38]  Steven Brebels,et al.  Multilayer thin-film MCM-D for the integration of high-performance RF and microwave circuits , 2001 .

[39]  Paul R. Young,et al.  Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides , 2001 .

[40]  Eric Beyne,et al.  MULTI-LAYER THIN-FILM MCM-D FOR THE INTEGRATION OF HIGH PERFORMANCE WIRELESS FRONT-END SYSTEMS , 2001 .

[41]  Ke Wu,et al.  Co-layered integration and interconnect of planar circuits and nonradiative dielectric (NRD) waveguide , 2000 .

[42]  H. Uchimura,et al.  Development of the "laminated waveguide" , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[43]  Gabriel M. Rebeiz,et al.  Low loss micromachined filters for millimeter-wave telecommunication systems , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[44]  F. Kuroki,et al.  High speed PCM transceiver based on the NRD guide technologies at 60 GHz band , 1997, 1997 Topical Symposium on Millimeter Waves. Proceedings (Cat. No.97TH8274).

[45]  P. Barnwell,et al.  A novel thick film on ceramic MCM technology offering MCM-D performance , 1997, Proceedings 1997 International Conference on Multichip Modules.

[46]  Gabriel M. Rebeiz,et al.  Micromachined W-band filters , 1996 .

[47]  H. H. Meinel,et al.  Commercial applications of millimeterwaves: history, present status, and future trends , 1995 .

[48]  R. Funck,et al.  Mixed technologies for microwave multichip module (MMCM) applications-a review , 1995, IEEE NTC,Conference Proceedings Microwave Systems Conference.

[49]  Ian D. Robertson,et al.  0.1 THz rectangular waveguide on GaAs semi-insulating substrate , 1995 .

[50]  Ke Wu,et al.  Photoimageable Thick-Film Micro-Coaxial Line for DC-to-Millimeter-Wave Broadband Applications , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[51]  Ke Wu,et al.  MODIFIED PHOTOIMAGEABLE THICK-FILM PROCESS FOR MILLIMETER-WAVE RECTANGULAR WAVEGUIDE APPLICATIONS , 2011 .

[52]  Y. Yoon,et al.  A compact lumped-element lowpass filter using low temperature cofired ceramic technology , 2003 .

[53]  S. Lucyszyn,et al.  RFIC and MMIC Design and Technology , 2001 .